Publications by authors named "Linda K Friedman"

Anticonvulsant effects of cannabidiol (CBD), a nonpsychoactive cannabinoid, have not been investigated in the juvenile brain. We hypothesized that CBD would attenuate epileptiform activity at an age when the brain first becomes vulnerable to neurotoxicity and social/cognitive impairments. To induce seizures, kainic acid (KA) was injected either into the hippocampus (KAih) or systemically (KAip) on postnatal (P) day 20.

View Article and Find Full Text PDF

Clinical and experimental studies have shown that many common secondary antiepileptic drugs (AEDs) are ineffective at blocking seizures in adulthood; however, some afford neuroprotection. In early development, certain AEDs cause apoptosis; however, it is unknown whether these drugs are neurotoxic to the juvenile brain following a developmentally regulated proapoptotic period and whether they alter the seizure threshold, seizure-induced neuronal vulnerability, and/or cognitive function. Lamotrigine (LTG), carbamazepine (CBZ), phenytoin (PHT), valproate (VPA), and topiramate (TPM) were systemically administered to rat pups for 7days beginning on postnatal (P) day 14 (P14), then half the animals were injected with kainate (KA) to trigger seizures, an age when the CA1 subregion becomes preferentially sensitive to status epilepticus.

View Article and Find Full Text PDF

Status epilepticus occurring in early postnatal development protects CA1 hippocampal neurons, the region most sensitive to seizure-induced injury in the developing brain. Here, we developed a "two hit" model in dissociated cultures of the rat hippocampus to test whether pre-exposure of immature neurons to high concentrations of glutamate, N-methyl-D-aspartic acid (NMDA) or alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) during a relatively resistant period prevents neurons from dying following a second exposure to the same chemicals after neurons mature and become highly vulnerable to excitatory amino acids (EAAs). Cultures were exposed to varied doses of glutamate, NMDA, or AMPA for 48 h at 5 DIV and again at 14 DIV for 5, 15, or 30 min.

View Article and Find Full Text PDF

Elevated Ca(2+) concentrations have been implicated in cell death mechanisms following seizures, however, the age and brain region of intracellular Ca(2+) accumulations [Ca(2+)](i), may influence whether or not they are toxic. Therefore, we examined regional accumulations of (45)Ca(2+) by autoradiography from rats of several developmental stages (P14, P21, P30 and P60) at 5, 14, and 24h after status epilepticus. To determine whether the uptake was intracellular, Ca(2+) was also assessed in hippocampal slices with the dye indicator, Fura 2AM at P14.

View Article and Find Full Text PDF

During a critical period of postnatal development the epileptogenic focus is thought to be of cortical origin. We used immunohistochemistry and Western blotting to elucidate potential mechanisms underlying an increased state of susceptibility to seizures in immature animals. Distribution patterns of N-methyl-D-aspartic acid (NMDA) (NR1 and NR2A/B) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) (GluR1 and GluR2) subunits were analyzed in retrosplenial, parietal and temporal cortices during the first two postnatal weeks following three episodes of status-epilepticus.

View Article and Find Full Text PDF

Sustained increases in intracellular calcium following prolonged seizures or other neurological insults have been thought to be responsible for neuronal cell death for well over two decades. For example, a seizure or a stroke can lead to excessive release of glutamate, an endogenous excitotoxin. Overactivation of receptors that interact with glutamate will raise calcium levels to stimulate a variety of signaling pathways that can impair neuronal respiration and eventually kill neurons.

View Article and Find Full Text PDF

The effects of repeated neonatal seizures on metabotropic glutamate receptors (mGluRs) during critical periods of brain development are unknown. Therefore, we characterized the expression of Group I (mGluR1 and mGluR5) and Group II (mGluR2/3) metabotropic glutamate receptor proteins in the developing limbic system in response to a varied neonatal seizure history. Status epilepticus was induced with kainic acid (KA) either once (1x KA) on postnatal (P) day (P13), twice (2x KA) on P6 and P9 or P13, or three times (3x KA) on P6, P9, and P13.

View Article and Find Full Text PDF

Ca2+ currents are thought to enhance glutamate excitotoxicity. To investigate whether reduced expression of the Ca2+ limiting GluR2(B) subunit enhances seizure-induced vulnerability to either CA1 or CA3 neurons, we delivered GluR2(B) oligodeoxynucleotides (AS-ODNs) to the dorsal hippocampus of adult rats before inducing kainate (KA) seizures. After knockdown, no changes in behavior, electrographic activity, or histology were observed.

View Article and Find Full Text PDF

The substantia nigra pars reticulata (SNR) is involved in the control of movement disorders including seizures through its GABAergic neurons. Microinfusions of muscimol (a GABA(A) receptor agonist) produce specific effects on seizures depending on sex, infusion site (SNR(anterior) or SNR(posterior)) and age. To assess whether these effects are due to sex differences in GABAergic indices within the SNR we analyzed the expression of alpha(1) subunit mRNA of the GABA(A) receptor and the levels of GABA immunoreactivity (IR) of male and female rats at postnatal day 15 (PN15) and PN30.

View Article and Find Full Text PDF

Reduction in GluR2 subunit expression and subsequent increases in AMPA receptor mediated Ca(2+) currents were postulated to exacerbate glutamate neurotoxicity following seizures or global ischemia. To directly test the effects of shifting the GluR1/GluR2 subunit ratio on excitotoxicity, GluR2 antisense deoxyoligonucleotides (AS-ODNs) were applied to dissociated hippocampal cultures for 1-8 days. The GluR1/GluR2 protein ratio was examined immunohistochemically and by Western blotting.

View Article and Find Full Text PDF