Publications by authors named "Linda Jan"

It has recently been shown that in a broad class of disordered systems oscillatory shear training can embed memories of specific shear protocols in relevant physical parameters such as the yield strain. These shear protocols can be used to change the physical properties of the system and memories of the protocol can later be "read" out. Here we investigate shear training memories in colloidal gels, which include an attractive interaction and network structure, and discover that such systems can support memories both along and orthogonal to the training flow direction.

View Article and Find Full Text PDF

We have studied the processes leading to the cementation of colloidal particles during their autonomous assembly on corroding copper electrodes within a Cu-Au galvanic microreactor. We determined the onset of particle immobilization through particle tracking, monitored the dissolution of copper as well as the deposition of insoluble products of the corrosion reactions in situ, and showed that particle immobilization initiated after reaction products (RPs) began to deposit on the electrode substrate. We further demonstrated that the time and the extent of RP precipitation and thus the strength of the particle-substrate bond could be tuned by varying the amount of copper in the system and the microreactor pH.

View Article and Find Full Text PDF

The mechanisms leading to the deposition of colloidal particles in a copper-gold galvanic microreactor are investigated. Using in situ current density measurements and particle velocimetry, we establish correlations between the spatial arrangement and the geometry of the electrodes, current density distribution, and particle aggregation behavior. Ionic transport phenomena are responsible for the occurrence of strongly localized high current density at the edges and corners of the copper electrodes at large electrode separation, leading to a preferential aggregation of colloidal particles at the electrode edges.

View Article and Find Full Text PDF