Publications by authors named "Linda J Popplewell"

Ribosomal protein L3-like (RPL3L) is a poorly characterized ribosomal protein that is exclusively expressed in skeletal and cardiac muscle. RPL3L is also downregulated in Duchenne muscular dystrophy (DMD), suggesting that it may play an important role in muscle biology. In this study, we investigated the role of RPL3L in skeletal muscle of healthy C57 and dystrophic mice.

View Article and Find Full Text PDF

Fibrosis results from the excessive accumulation of extracellular matrix in chronically injured tissue. The fibrotic process is governed by crosstalk between many signaling pathways. The search for an effective treatment is further complicated by the fact that there is a degree of tissue-specificity in the pathways involved, although the process is not completely understood for all tissues.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is caused by mutations that disrupt the reading frame of the human DMD gene. Selective removal of exons flanking an out-of-frame DMD mutation can result in an in-frame mRNA transcript that may be translated into an internally deleted Becker muscular dystrophy-like functionally active dystrophin protein with therapeutic activity. Antisense oligonucleotides (AOs) can be designed to bind to complementary sequences in the targeted mRNA and modify pre-mRNA splicing to correct the reading frame of a mutated transcript.

View Article and Find Full Text PDF

Duchenne Muscular Dystrophy (DMD) is a common, inherited, incurable, fatal muscle wasting disease caused by deletions that disrupt the reading frame of the DMD gene such that no functional dystrophin protein is produced. Antisense oligonucleotide (AO)-directed exon skipping restores the reading frame of the DMD gene, and truncated, yet functional dystrophin protein is expressed. The aim of this study was to assess the efficiency of two novel rigid, cationic carotenoid lipids, C30-20 and C20-20, in the delivery of a phosphorodiamidate morpholino (PMO) AO, specifically designed for the targeted skipping of exon 45 of DMD mRNA in normal human skeletal muscle primary cells (hSkMCs).

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is caused by mutations that disrupt the reading frame of the human DMD gene. Selective removal of exons flanking an out-of-frame DMD mutation can result in an in-frame mRNA transcript that may be translated into an internally deleted, Becker muscular dystrophy (BMD)-like, but functionally active dystrophin protein with therapeutic activity. Antisense oligonucleotides (AOs) can be designed to bind to complementary sequences in the targeted mRNA and modify pre-mRNA splicing to correct the reading frame of a mutated transcript so that gene expression is restored.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is caused by the lack of functional dystrophin protein, most commonly as a result of a range of out-of-frame mutations in the DMD gene. Modulation of pre-mRNA splicing with antisense oligonucleotides (AOs) to restore the reading frame has been demonstrated in vitro and in vivo, such that truncated but functional dystrophin is expressed. AO-induced skipping of exon 51 of the DMD gene, which could treat 13% of DMD patients, has now progressed to clinical trials.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is caused by out-of-frame mutations of the human DMD gene. Antisense oligonucleotides (AOs) have previously been used to skip additional exons that border the deletions such that the reading frame is restored and internally truncated, but functional, dystrophin expressed. We have designed phosphorodiamidate morpholino oligomer (PMO) AOs to various exons of the human dystrophin gene.

View Article and Find Full Text PDF