Chemical fate, effect, and damage should be accounted for in the analysis of human health impacts by toxic chemicals in life-cycle assessment (LCA). The goal of this article is to present a new method to derive human damage and effect factors of toxic pollutants, starting from a lognormal dose-response function. Human damage factors are expressed as disability-adjusted life years (DALYs).
View Article and Find Full Text PDFThe appropriateness of the fossil Cumulative Energy Demand (CED) as an indicator for the environmental performance of products and processes is explored with a regression analysis between the environmental life-cycle impacts and fossil CEDs of 1218 products, divided into the product categories "energy production", "material production", "transport", and "waste treatment". Our results show that, for all product groups but waste treatment, the fossil CED correlates well with most impact categories, such as global warming, resource depletion, acidification, eutrophication, tropospheric ozone formation, ozone depletion, and human toxicity (explained variance between 46% and 100%). We conclude that the use of fossil fuels is an important driver of several environmental impacts and thereby indicative for many environmental problems.
View Article and Find Full Text PDF