Publications by authors named "Linda Hoffmann"

Cancer research of immune-modulating mechanisms mainly addresses the role of tumor-infiltrating immune cells. Mechanisms modulating the adaptive immune system at the primary activation site - the draining lymph node (LN) - are less investigated. Here we present tumor-caused histomorphological changes in tumor draining LNs of breast cancer patients, dependent on the localization (sentinel LN vs.

View Article and Find Full Text PDF

Current worldwide figures suggest that obesity is pandemic. Understanding the underlying molecular mechanisms would help develop viable anti-obesity therapies. Here, we assess the influence of obesity-induced inflammation on white adipocyte cyclic guanosine monophosphate (cGMP) signaling, which is beneficial for adipocyte differentiation and thermogenesis.

View Article and Find Full Text PDF

Helminths induce type 2 immune responses and establish an anti-inflammatory milieu in their hosts. This immunomodulation was previously shown to improve diet-induced insulin resistance which is linked to chronic inflammation. In the current study, we demonstrate that infection with the filarial nematode Litomosoides sigmodontis increased the eosinophil number and alternatively activated macrophage abundance within epididymal adipose tissue (EAT) and improved glucose tolerance in diet-induced obese mice in an eosinophil-dependent manner.

View Article and Find Full Text PDF

Brown adipose tissue is a special type of fat contributing to energy expenditure in human newborns and adults. Moreover, subcutaneous white adipose tissue has a high capacity to adapt an energy-consuming, brown-like/beige phenotype. Here, we developed an easy to handle and fast to accomplish method to efficiently transfer genes into brown and beige fat pads .

View Article and Find Full Text PDF

The nitric oxide (NO)/soluble guanylate cyclase (sGC)/cyclic guanosine monophasphate (cGMP)-signalling pathway is impaired under oxidative stress conditions due to oxidation and subsequent loss of the prosthetic sGC heme group as observed in particular in chronic renal failure. Thus, the pool of heme free sGC is increased under pathological conditions. sGC activators such as cinaciguat selectively activate the heme free form of sGC and target the disease associated enzyme.

View Article and Find Full Text PDF

Obesity is characterized by a positive energy balance and expansion of white adipose tissue (WAT). In contrast, brown adipose tissue (BAT) combusts energy to produce heat. Here we show that a small molecule stimulator (BAY 41-8543) of soluble guanylyl cyclase (sGC), which produces the second messenger cyclic GMP (cGMP), protects against diet-induced weight gain, induces weight loss in established obesity, and also improves the diabetic phenotype.

View Article and Find Full Text PDF

The second messenger cyclic guanosine monophosphate (cGMP) is a key mediator in physiological processes such as vascular tone, and its essential involvement in pathways regulating metabolism has been recognized in recent years. Here, we focus on the fundamental role of cGMP in brown adipose tissue (BAT) differentiation and function. In contrast to white adipose tissue (WAT), which stores energy in the form of lipids, BAT consumes energy stored in lipids to generate heat.

View Article and Find Full Text PDF
Article Synopsis
  • Brown adipose tissue (BAT) is crucial for burning energy and may be a key target for anti-obesity treatments, as it's activated by the sympathetic nervous system through cold exposure and catecholamine release.
  • Research shows that while traditional methods like cold exposure aren't practical, adenosine signaling could play a significant role in BAT activation and energy expenditure.
  • Studies indicate that targeting the adenosine A2A receptor can boost thermogenesis and potentially lead to the development of therapies to combat obesity, as A2A activation has been shown to promote healthier metabolic outcomes in mice on high-fat diets.
View Article and Find Full Text PDF

Brown adipose tissue (BAT) was previously regarded as a special type of fat relevant only for defending hibernating animals and newborns against a cold environment. Recently, BAT has received considerable attention following its (re)discovery in humans. Using glucose tracers, multiple laboratories independently found metabolically active BAT in adults.

View Article and Find Full Text PDF

Essential physiological homeostatic processes such as vascular tone, fluid balance, cardiorenal function, and sensory processes are regulated by the second messenger cyclic guanosine 3', 5'-monophosphate (cGMP). Dysregulation of cGMP-dependent pathways plays an important role in cardiovascular diseases such as hypertension, pulmonary hypertension, heart failure, or erectile dysfunction. Thus, the cGMP pathway consisting of the cGMP-generating guanylyl cyclases, protein kinases, and phosphodiesterases (PDE) has evolved to an important drug target and is the focus of a wide variety of research fields ranging from unraveling mechanisms on the molecular level to understanding the regulation of physiological and pathophysiological processes by cGMP.

View Article and Find Full Text PDF

The second messenger cyclic guanosine monophosphate (cGMP) mediates the physiological effects of nitric oxide and natriuretic peptides in a broad spectrum of tissues and cells. So far, the major focus of research on cGMP lay on the cardiovascular system. Recent evidence suggests that cGMP also plays a major role in the regulation of cellular and whole-body metabolism.

View Article and Find Full Text PDF

With more than half a billion individuals affected worldwide, obesity has reached pandemic proportions. Development of "brown-like" or "brite" adipocytes within white adipose tissue (WAT) has potential antiobesity and insulin-sensitizing effects. We investigated the role of cyclic GMP (cGMP) signaling, focusing on cGMP-dependent protein kinase I (PKGI) in WAT.

View Article and Find Full Text PDF

In cardiovascular disease, the protective NO/sGC/cGMP signalling-pathway is impaired due to a decreased pool of NO-sensitive haem-containing sGC accompanied by a reciprocal increase in NO-insensitive haem-free sGC. However, no direct method to detect cellular haem-free sGC other than its activation by the new therapeutic class of haem mimetics, such as BAY 58-2667, is available. Here we show that fluorescence dequenching, based on the interaction of the optical active prosthetic haem group and the attached biarsenical fluorophor FlAsH can be used to detect changes in cellular sGC haem status.

View Article and Find Full Text PDF

Objectives: The nitric oxide-soluble guanylate cyclase (sGC)-cGMP signal transduction pathway is impaired in different cardiovascular diseases, including pulmonary hypertension, heart failure and arterial hypertension. Riociguat is a novel stimulator of soluble guanylate cyclase (sGC). However, little is known about the effects of sGC stimulators in experimental models of hypertension.

View Article and Find Full Text PDF

A microfluidic polymer chip for the self-assembly of DNA conjugates through DNA-directed immobilization is developed. The chip is fabricated from two parts, one of which contains a microfluidic channel produced from poly(dimethylsiloxane) (PDMS) by replica-casting technique using a mold prepared by photolithographic techniques. The microfluidic part is sealed by covalent bonding with a chemically activated glass slide containing a DNA oligonucleotide microarray.

View Article and Find Full Text PDF

The activating JAK2V617F mutation has been described in the majority of patients with BCR-ABL-negative myeloproliferative disorders (MPD). In this report, we characterize the small-molecule LS104 as a novel non-ATP-competitive JAK2 inhibitor: Treatment of JAK2V617F-positive cells with LS104 resulted in dose-dependent induction of apoptosis and inhibition of JAK2 autophosphorylation and of downstream targets. Activation of these targets by JAK2 was confirmed in experiments using small interfering RNA.

View Article and Find Full Text PDF

The ubiquitously expressed nitric oxide (NO) receptor soluble guanylate cyclase (sGC) plays a key role in signal transduction. Binding of NO to the N-terminal prosthetic heme moiety of sGC results in approximately 200-fold activation of the enzyme and an increased conversion of GTP into the second messenger cGMP. sGC exists as a heterodimer the dimerization of which is mediated mainly by the central region of the enzyme.

View Article and Find Full Text PDF

Pex19p is required for the topogenesis of peroxisomal membrane proteins (PMPs). Here we have demonstrated that Pex19p is also required for the peroxisomal targeting and stability of Pex17p, a peripheral component of the docking complex of the peroxisomal protein import machinery. We have demonstrated that Pex17p is associated with the peroxisomal Pex13p-Pex14p complex as well as with Pex19p.

View Article and Find Full Text PDF