Publications by authors named "Linda H-L Lua"

Current medical countermeasures (MCMs) for nerve agent poisoning have limited efficacy, and can cause serious adverse effects, prompting the requirement for new broad-spectrum therapeutics. Human plasma-derived butyrylcholinseterase (huBChE) is a promising novel bioscavenger MCM which has shown potential in animal studies, however, is economically prohibitive to manufacture at scale. This study addresses current challenges for the economical production of a bioactive and long-acting recombinant huBChE (rBChE) in mammalian cells by being the first to directly compare novel rBChE design strategies.

View Article and Find Full Text PDF

The manufacturing scale implementation of membrane chromatography to purify monoclonal antibodies has gradually increased with the shift in industry focus toward flexible manufacturing and disposable technologies. Membrane chromatography are used to remove process-related impurities such as host cell proteins (HCPs) and DNA, leachates, and endotoxins, with improved productivity and process flexibility. However, application of membrane chromatography to separate product-related variants such as charge variants has not gained major traction due to low-binding capacity.

View Article and Find Full Text PDF

Organophosphorus nerve agents represent a serious chemical threat due to their ease of production and scale of impact. The recent use of the nerve agent Novichok has re-emphasised the need for broad-spectrum medical countermeasures (MCMs) to these agents. However, current MCMs are limited.

View Article and Find Full Text PDF

Escherichia coli remains a traditional and widely used host organism for recombinant protein production. Its well-studied genome, availability of vectors and strains, cheap and relatively straight-forward cultivation methods paired with reported high protein yields are reasons why E. coli is often the first-choice host expression system for recombinant protein production.

View Article and Find Full Text PDF

There is an unmet need for safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines that are stable and can be cost-effectively produced at large scale. Here, a biopolymer particle (BP) vaccine technology that can be quickly adapted to new and emerging variants of SARS-CoV-2 is used. Coronavirus antigen-coated BPs are described as vaccines against SARS-CoV-2.

View Article and Find Full Text PDF

Cyclic disulfide-rich peptides have attracted significant interest in drug development and biotechnology. Here, we describe a protocol for producing cyclic peptide precursors in Pichia pastoris that undergo in vitro enzymatic maturation into cyclic peptides using recombinant asparaginyl endopeptidases (AEPs). Peptide precursors are expressed with a C-terminal His tag and secreted into the media, enabling facile purification by immobilized metal affinity chromatography.

View Article and Find Full Text PDF

The need to intensify downstream processing of monoclonal antibodies to complement the advances in upstream productivity has led to increased attention toward implementing membrane technologies. With the industry moving toward continuous operations and single use processes, membrane technologies show promise in fulfilling the industry needs due to their operational flexibility and ease of implementation. Recently, the applicability of membrane-based unit operations in integrating the downstream process has been explored.

View Article and Find Full Text PDF

Vaccination is the most effective method of disease prevention and control. Many viruses and bacteria that once caused catastrophic pandemics (e.g.

View Article and Find Full Text PDF

Rapid advances in intensifying upstream processes for biologics production have left downstream processing as a bottleneck in the manufacturing scheme. Biomanufacturers are pursuing continuous downstream process development to increase efficiency and flexibility, reduce footprint and cost of goods, and improve product consistency and quality. Even after successful laboratory trials, the implementation of a continuous process at manufacturing scale is not easy to achieve.

View Article and Find Full Text PDF

Development of antifouling films which selectively capture or target proteins of interest is essential for controlling interactions at the "bio/nano" interface. However, in order to synthesize biofunctional films from synthetic polymers that incorporate chemical "motifs" for surface immobilization, antifouling, and oriented biomolecule attachment, multiple reaction steps need to be carried out at the solid/liquid interface. EKx is a zwitterionic peptide that has previously been shown to have excellent antifouling properties.

View Article and Find Full Text PDF

Baculovirus-insect cell expression system has become one of the most widely used eukaryotic expression systems for heterologous protein production in many laboratories. The availability of robust insect cell lines, serum-free media, a range of vectors and commercially-packaged kits have supported the demand for maximizing the exploitation of the baculovirus-insect cell expression system. Naturally, this resulted in varied strategies adopted by different laboratories to optimize protein production.

View Article and Find Full Text PDF

Cattle tick infestations remain an important burden for farmers in tropical area like in New Caledonia. With the development of acaricide resistance, tick vaccines should be an attractive alternative to control ticks but their efficacy needs to be improved. In this study three adjuvants were studied in an experimental tick vaccine with a Bm86 protein to assess their performance in terms of antibody productions and adverse reactions following vaccinations.

View Article and Find Full Text PDF

Improved understanding of antigenic components and their interaction with the immune system, as supported by computational tools, permits a sophisticated approach to modern vaccine design. Vaccine platforms provide an effective tool by which strategically designed peptide and protein antigens are modularized to enhance their immunogenicity. These modular vaccine platforms can overcome issues faced by traditional vaccine manufacturing and have the potential to generate safe vaccines, rapidly and at a low cost.

View Article and Find Full Text PDF

Highly pathogenic avian influenza (HPAI) viruses cause a severe and lethal infection in domestic birds. The increasing number of HPAI outbreaks has demonstrated the lack of capabilities to control the rapid spread of avian influenza. Poultry vaccination has been shown to not only reduce the virus spread in animals but also reduce the virus transmission to humans, preventing potential pandemic development.

View Article and Find Full Text PDF

Infection with Group A streptococcus (GAS)-an oropharyngeal pathogen-leads to mortality and morbidity, primarily among developing countries and indigenous populations in developed countries. The development of safe and affordable GAS vaccines is challenging, due to the presence of various unique GAS serotypes, antigenic variation within the same serotype, and potential auto-immune responses. In the present study, we evaluated the use of a sublingual freeze-dried (FD) formulation based on immunogenic modular virus-like particles (VLPs) carrying the J8 peptide (J8-VLPs) as a potential safe and cost-effective GAS vaccine for inducing protective systemic and mucosal immunity.

View Article and Find Full Text PDF

Human interferon gamma (hIFNγ) is an important cytokine in the innate and adaptive immune system, produced commercially in Escherichia coli. Efficient expression of hIFNγ has been reported once for Pichia pastoris (Wang et al., 2014) - a proven heterologous expression system.

View Article and Find Full Text PDF

A high global burden of rotavirus disease and the unresolved challenges with the marketed rotavirus vaccines, particularly in the developing world, have ignited efforts to develop virus-like particle (VLP) vaccines for rotavirus. While rotavirus-like particles comprising multiple viral proteins can be difficult to process, modular VLPs presenting rotavirus antigenic modules are promising alternatives in reducing process complexity and cost. In this study, integrated molecular and bioprocess engineering approaches were used to simplify the production of modular murine polyomavirus capsomeres and VLPs presenting a rotavirus 18 kDa VP8* antigen.

View Article and Find Full Text PDF

Virus-like particles (VLPs) and capsomere subunits have shown promising potential as safe and effective vaccine candidates. They can serve as platforms for the display of foreign epitopes on their surfaces in a modular architecture. Depending on the physicochemical properties of the antigenic modules, modularization may affect the expression, solubility and stability of capsomeres, and VLP assembly.

View Article and Find Full Text PDF

Highly pathogenic avian influenza (HPAI) causes significant economic loss, reduced food security and poses an ongoing pandemic threat. Poultry vaccination significantly decreases these problems and recognizes that the health of humans, animals and ecosystems are connected. Low-cost manufacture of poultry vaccine matched quickly to the ever-changing circulating strain is needed for effective vaccination.

View Article and Find Full Text PDF

Virus-like particles are an established class of commercial vaccine possessing excellent function and proven stability. Exciting developments made possible by modern tools of synthetic biology has stimulated emergence of modular VLPs, whereby parts of one pathogen are by design integrated into a less harmful VLP which has preferential physical and manufacturing character. This strategy allows the immunologically protective parts of a pathogen to be displayed on the most-suitable VLP.

View Article and Find Full Text PDF

Virus-like particles (VLPs) are repetitive organizations of viral proteins assembled in an appropriate physicochemical environment. VLPs can stimulate both innate and adaptive immune responses, due to their particulate structure enabling uptake by antigen presenting cells. These characteristics have led to successful development of VLP-vaccine products, and will ensure their vast potential in years to come.

View Article and Find Full Text PDF

Nanoparticles are increasingly used to adjuvant vaccine formulations due to their biocompatibility, ease of manufacture and the opportunity to tailor their size, shape, and physicochemical properties. The efficacy of similarly-sized silica (Si-OH), poly (D,L-lactic-co-glycolic acid) (PLGA) and poly caprolactone (PCL) nanoparticles (nps) to adjuvant recombinant capsomere presenting antigenic M2e modular peptide from Influenza A virus (CapM2e) was investigated in vivo. Formulation of CapM2e with Si-OH or PLGA nps significantly boosted the immunogenicity of modular capsomeres, even though CapM2e was not actively attached to the nanoparticles prior to injection (i.

View Article and Find Full Text PDF