Tropism of neural stem cells (NSCs) to hypoxic tumor areas provides an opportunity for the drug delivery. Here, we demonstrate that NSCs effectively transport antisense oligonucleotides (ASOs) targeting oncogenic and tolerogenic signal transducer and activator of transcription 3 (STAT3) protein into glioma microenvironment. To enable spontaneous, scavenger receptor-mediated endocytosis by NSCs, we used previously described CpG-STAT3ASO conjugates.
View Article and Find Full Text PDFTumor tropic neural stem cells (NSCs) can improve the anti-tumor efficacy of oncovirotherapy agents by protecting them from rapid clearance by the immune system and delivering them to multiple distant tumor sites. We recently completed a first-in-human trial assessing the safety of a single intracerebral dose of NSC-delivered CRAd-Survivin-pk7 (NSC.CRAd-S-pk7) combined with radiation and chemotherapy in newly diagnosed high-grade glioma patients.
View Article and Find Full Text PDFHepatitis B vaccination is recommended in all patients with end-stage kidney disease (ESKD). However, only 50-60% of these patients achieve protective antibody levels if immunized after starting dialysis. Strategies to overcome this low seroconversion rate include a 6-month vaccination schedule starting earlier [chronic kidney disease (CKD) stage 4 and 5] to ensure immunity when patients progress to ESKD.
View Article and Find Full Text PDFOvarian cancer is the most lethal gynecological malignancy in the United States. Current standard of treatment includes surgical debulking and chemotherapy, such as cisplatin and paclitaxel. However, the patients' response rate for chemotherapy in ovarian cancer is not optimal, and they often develop chemoresistance and suffer from side effects.
View Article and Find Full Text PDFBackground: Immortalized, clonal HB1.F3.CD 21 human neural stem/progenitor cells (NSCs), loaded with therapeutic cargo prior to intraperitoneal (IP) injection, have been shown to improve the delivery and efficacy of therapeutic agents in pre-clinical models of stage III ovarian cancer.
View Article and Find Full Text PDFDespite improvements in surgical techniques and chemotherapy, ovarian cancer remains the most lethal gynecologic cancer. Thus, there is an urgent need for more effective therapeutics, particularly for chemo-resistant peritoneal ovarian cancer metastases. Oncolytic virotherapy represents an innovative treatment paradigm; however, for oncolytic viruses tested from the last generation of genetically engineered viruses, the therapeutic benefits have been modest.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2020
Immunotherapy is emerging as one of the most effective methods for treating many cancers. However, immunotherapy can still introduce significant off-target toxicity, and methods are sought to enable targeted immunotherapy at tumor sites. Here, we show that relatively large (>100-nm) anionic nanoparticles administered intraperitoneally (i.
View Article and Find Full Text PDFNeural stem cells (NSCs) are inherently tumor-tropic, which allows them to migrate through normal tissue and selectively localize to invasive tumor sites in the brain. We have engineered a clonal, immortalized allogeneic NSC line (HB1.F3.
View Article and Find Full Text PDFOvarian cancer is commonly diagnosed only after it has metastasized to the abdominal cavity (stage III). While the current standard of care of intraperitoneal (IP) administration of cisplatin and paclitaxel (PTX) combination chemotherapy has benefit, patient 5-year survival rates are low and have not significantly improved in the past decade. The ability to target chemotherapy selectively to ovarian tumors while sparing normal tissue would improve efficacy and decrease toxicities.
View Article and Find Full Text PDFTumor-tropic neural stem cells (NSCs) can be engineered to localize gene therapies to invasive brain tumors. However, like other stem cell-based therapies, survival of therapeutic NSCs after transplantation is currently suboptimal. One approach to prolonging cell survival is to transiently overexpress an antiapoptotic protein within the cells prior to transplantation.
View Article and Find Full Text PDFOvarian cancer is particularly aggressive once it has metastasized to the abdominal cavity (stage III). Intraperitoneal (IP) as compared to intravenous (IV) administration of chemotherapy improves survival for stage III ovarian cancer, demonstrating that concentrating chemotherapy at tumor sites has therapeutic benefit; unfortunately, IP therapy also increases toxic side effects, thus preventing its completion in many patients. The ability to target chemotherapy selectively to ovarian tumors while sparing normal tissue would improve efficacy and decrease toxicities.
View Article and Find Full Text PDF