Publications by authors named "Linda Ebermann"

The EU General Data Protection Regulation (GDPR) requirements have prompted a shift from centralised controlled access genome-phenome archives to federated models for sharing sensitive human data. In a data-sharing federation, a central node facilitates data discovery; meanwhile, distributed nodes are responsible for handling data access requests, concluding agreements with data users and providing secure access to the data. Research institutions that want to become part of such federations often lack the resources to set up the required controlled access processes.

View Article and Find Full Text PDF

Cytomegalovirus (CMV) is a ubiquitous virus, causing the most common congenital infection in humans, yet a vaccine against this virus is not available. Experimental studies of immunity against CMV in animal models of infection, such as the infection of mice with mouse CMV (MCMV), have relied mainly on parenteral infection protocols, although the virus naturally transmits by mucosal routes via body fluids. To characterize the biology of infections by mucosal routes, we compared the kinetics of virus replication, latent viral load and CD8 T-cell responses in lymphoid organs upon experimental intranasal (targeting the respiratory tract) and intragastric (targeting the digestive tract) infection with systemic intraperitoneal infection of two unrelated mouse strains.

View Article and Find Full Text PDF

The inhibition of death-receptor apoptosis is a conserved viral function. The murine cytomegalovirus (MCMV) gene M36 is a sequence and functional homologue of the human cytomegalovirus gene UL36, and it encodes an inhibitor of apoptosis that binds to caspase-8, blocks downstream signaling and thus contributes to viral fitness in macrophages and in vivo. Here we show a direct link between the inability of mutants lacking the M36 gene (ΔM36) to inhibit apoptosis, poor viral growth in macrophage cell cultures and viral in vivo fitness and virulence.

View Article and Find Full Text PDF

Well-established differences in Coxsackievirus B3 (CVB3) elimination in resistant C57BL/6 and permissive A.SW/SnJ mice provide suitable models for studying the significance of the link between mitochondrial respiratory chain (RC), antioxidative stress components and mitochondrion-related apoptosis in the context of myocardial virus elimination. Distinct myocardial CVB3 titer in C57BL/6 (2.

View Article and Find Full Text PDF

Background/aims: The adenine nucleotide translocase (ANT) exchanges ATP and ADP over the inner mitochondrial membrane, supplying the cells with energy. Interestingly, myocardial ANT1 overexpression preserves cardiac structure and function under pathophysiological conditions. To ascertain whether the contractile system is directly affected by increased ANT1 expression, we analyzed cell morphology, contraction and relaxation parameters of ANT1 transgenic (ANT1-TG) cardiomyocytes, myofibrillar protein expression, and Ca(2+) handling in ANT1-TG rat hearts.

View Article and Find Full Text PDF

Background: Pelota (PELO) is an evolutionary conserved protein, which has been reported to be involved in the regulation of cell proliferation and stem cell self-renewal. Recent studies revealed the essential role of PELO in the No-Go mRNA decay, by which mRNA with translational stall are endonucleotically cleaved and degraded. Further, PELO-deficient mice die early during gastrulation due to defects in cell proliferation and/or differentiation.

View Article and Find Full Text PDF

Background: Angiotensin-converting enzyme (ACE) 2 is a novel homologue of ACE. It metabolizes angiotensin (Ang)II to Ang-(1-7). This study aims to investigate the diagnostic and prognostic potency of circulating ACE2 activity in patients with heart failure (HF) from Chagas' disease (CD).

View Article and Find Full Text PDF

The disturbance of myocardial energy metabolism has been discussed as contributing to the progression of heart failure. Little however is known about the cardiac mitochondrial/cytosolic energy transfer in murine and human inflammatory heart disease. We examined the myocardial creatine kinase (CK) system, which connects mitochondrial ATP-producing and cytosolic ATP-consuming processes and is thus of central importance to the cellular energy homeostasis.

View Article and Find Full Text PDF

Mitochondrial dysfunction is implicated in the pathogenesis of diabetic cardiomyopathy, a common complication of diabetes. Adenosine nucleotide translocase (ANT) translocates ADP/ATP across the inner mitochondrial membrane. Our study aimed to test the hypothesis that overexpression of ANT1 in cardiomyocytes has cardioprotective effects in diabetic cardiomyopathy induced by streptozotocin (STZ).

View Article and Find Full Text PDF

Angiotensin-(1-7) is associated with beneficial effects in cardiovascular diseases. In this study, we determined the effect of AVE0991, a nonpeptide angiotensin-(1-7) receptor agonist, on cardiac function in an animal model of diabetes mellitus type I. Diabetes was induced in Sprague-Dawley rats by a single injection of streptozotocin (70 mg/kg).

View Article and Find Full Text PDF

Background: Strong evidence suggests that mitochondrial malfunction, which leads to disturbed energy metabolism and stimulated apoptosis, is a linchpin in the induction and manifestation of cardiac failure. An adequate exchange of ATP and ADP over the inner mitochondrial membrane by the adenine nucleotide translocase (ANT) is thereby essential to guarantee the cellular energy supply.

Methods And Results: To explore the effect of an ameliorated mitochondrial ATP/ADP transportation on cardiac dysfunction, we generated transgenic rats overexpressing ANT1 in the heart (ANT rats) and crossed them with renin-overexpressing rats (REN rats) suffering from hypertension-induced cardiac insufficiency.

View Article and Find Full Text PDF