Micro positron emission tomography (PET) and micro computed tomography (CT) imaging are powerful, ideal research tools for following the progression of cardiovascular calcification. Due to their non-invasive nature, small research animals can be imaged at multiple time points. The challenge lies in the accurate quantification of cardiovascular calcification.
View Article and Find Full Text PDFPurpose Of Review: Inhibitors of sodium-glucose cotransporter-2 (SGLT2) lower renal glucose reabsorption and, thus, are used to treat patients with type 2 diabetes mellitus. Clinical trials coincidentally showed that SGLT2 inhibitors also benefitted patients with heart failure. This review explores the impact of SGLT2 inhibitors on other aspects of cardiovascular disease and skeletal health.
View Article and Find Full Text PDFCardiovascular disease and osteoporosis, major causes of morbidity and mortality, are associated with hyperlipidemia. Recent studies show that empagliflozin (EMPA), an inhibitor of sodium-glucose cotransporter-2 (SGLT2), improves cardiovascular health. In preclinical animal studies, EMPA mitigates vascular calcification in the males but its effects in the females are not known.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2024
Peripheral serotonin levels are associated with cardiovascular disease risk. We previously found that serum serotonin levels are higher in hyperlipidemic mice than wild-type mice. Evidence also suggests that serotonin regulates biomineralization, in that serotonin treatment augments TNF-a-induced matrix calcification of aortic valve interstitial cells and that a selective inhibitor of peripheral serotonin, LP533401, rescues bone loss induced by ovariectomy in mice.
View Article and Find Full Text PDFBackground And Aims: Cardiovascular disease risk is associated with coronary artery calcification and is mitigated by regular exercise. Paradoxically, elite endurance athletes, who have low risk, are likely to have more coronary calcification, raising questions about the optimal level of activity.
Methods: Female hyperlipidemic (Apoe) mice with baseline aortic calcification were subjected to high-speed (18.
Recent studies have found an association between high volumes of physical activity and increased levels of coronary artery calcification (CAC) among older male endurance athletes, yet the underlying mechanisms have remained largely elusive. Potential mechanisms include greater exposure to inflammatory cytokines, reactive oxygen species and oxidised low-density lipoproteins, as acute strenuous physical activity has been found to enhance their systemic release. Other possibilities include post-exercise elevations in circulating parathyroid hormone, which can modify the amount and morphology of calcific plaque, and long-term exposure to non-laminar blood flow within the coronary arteries during vigorous physical activity, particularly in individuals with pre-existing atherosclerosis.
View Article and Find Full Text PDFCurr Opin Lipidol
October 2022
Purpose Of Review: Lipids and lipoproteins have long been known to contribute to atherosclerosis and cardiovascular calcification. One theme of recent work is the study of lipoprotein (a) [Lp(a)], a lipoprotein particle similar to LDL-cholesterol that carries a long apoprotein tail and most of the circulating oxidized phospholipids.
Recent Findings: In-vitro studies show that Lp(a) stimulates osteoblastic differentiation and mineralization of vascular smooth muscle cells, while the association of Lp(a) with coronary artery calcification continues to have varying results, possibly because of the widely varying threshold levels of Lp(a) chosen for association analyses.
Background: Coronary calcification associates closely with cardiovascular risk, but its progress is accelerated in response to some interventions widely used to reduce risk. This paradox suggests that qualitative, not just quantitative, changes in calcification may affect plaque stability. To determine if the microarchitecture of calcification varies with aging, Western diet, statin therapy, and high intensity, progressive exercise, we assessed changes in a priori selected computed tomography radiomic features (intensity, size, shape, and texture).
View Article and Find Full Text PDFVascular calcification, once considered a degenerative, end-stage, and inevitable condition, is now recognized as a complex process regulated in a manner similar to skeletal bone at the molecular and cellular levels. Since the initial discovery of bone morphogenetic protein in calcified human atherosclerotic lesions, decades of research have now led to the recognition that the regulatory mechanisms and the biomolecules that control cardiovascular calcification overlap with those controlling skeletal mineralization. In this review, we focus on key biomolecules driving the ectopic calcification in the circulation and their regulation by metabolic, hormonal, and inflammatory stimuli.
View Article and Find Full Text PDFCurr Opin Lipidol
October 2021
Purpose Of Review: Cardiovascular calcification, a common feature of atherosclerotic lesions, has long been known to associate with cardiovascular risk. The roles of lipoproteins in atherosclerosis are also established, and lipid-modifying therapies have shown capacity for plaque regression. However, the association of lipid-modifying therapies with calcification is more complex, and currently no medical therapies have been found to reverse or attenuate calcification in patients.
View Article and Find Full Text PDFThe role of vitamin D in the cardiovascular system is complex because it regulates expression of genes involved in diverse metabolic processes. Although referred to as a vitamin, it is more accurately considered a steroid hormone, because it is produced endogenously in the presence of ultraviolet light. It occurs as a series of sequentially activated forms, here referred to as vitamin D-hormones.
View Article and Find Full Text PDFCalcification, fibrosis, and chronic inflammation are the predominant features of calcific aortic valve disease, a life-threatening condition. Drugs that induce serotonin (5-hydroxytryptamine [5-HT]) are known to damage valves, and activated platelets, which carry peripheral serotonin, are known to promote calcific aortic valve stenosis. However, the role of 5-HT in valve leaflet pathology is not known.
View Article and Find Full Text PDFBackground: Despite the association of physical activity with improved cardiovascular outcomes and the association of high coronary artery calcification (CAC) scores with poor prognosis, elite endurance athletes have increased CAC. Yet, they nevertheless have better cardiovascular survival. We hypothesized that exercise may transform vascular calcium deposits to a more stable morphology.
View Article and Find Full Text PDFCurr Opin Lipidol
October 2019
Purpose Of Review: This review addresses recent developments in studies of lipid regulation of calcific disease of arteries and cardiac valves, including the role of nuclear receptors. The role of lipid-soluble signals and their receptors is timely given the recent evidence and concerns that lipid-lowering treatment may increase the rate of progression of coronary artery calcification, which has been long associated with increased cardiovascular risk. Understanding the mechanisms will be important for interpreting such clinical information.
View Article and Find Full Text PDFTrends Endocrinol Metab
September 2019
Calcific vascular and valvular disease (CVVD) is widespread and has major health consequences. Although coronary artery calcification has long been associated with hyperlipidemia and increased mortality, recent evidence suggests that its progression is increased in association with cholesterol-lowering HMG-CoA reductase inhibitors ('statins') and long-term, high-intensity exercise. A nationwide trial showed no cardiovascular benefit of vitamin D supplements.
View Article and Find Full Text PDFBiomechanical forces and endothelial-to-mesenchymal transition (EndoMT) are known to mediate valvulogenesis. However, the relative contributions of myocardial contractile and hemodynamic shear forces remain poorly understood. We integrated 4-D light-sheet imaging of transgenic zebrafish models with moving-domain computational fluid dynamics to determine effects of changes in contractile forces and fluid wall shear stress (WSS) on ventriculobulbar (VB) valve development.
View Article and Find Full Text PDFFront Cardiovasc Med
November 2018
Previously considered a degenerative process, cardiovascular calcification is now established as an active process that is regulated in several ways by lipids, phospholipids, and lipoproteins. These compounds serve many of the same functions in vascular and valvular calcification as they do in skeletal bone calcification. Hyperlipidemia leads to accumulation of lipoproteins in the subendothelial space of cardiovascular tissues, which leads to formation of mildly oxidized phospholipids, which are known bioactive factors in vascular cell calcification.
View Article and Find Full Text PDFThere is growing concern that the physician-scientist is endangered due to a leaky training pipeline and prolonged time to scientific independence (1). The NIH Physician-Scientist Workforce Working Group has concluded that as many as 1,000 individuals will need to enter the pipeline each year to sustain the workforce (2). Moreover, surveys of postgraduate training programs document considerable variability in disposition and infrastructure (3).
View Article and Find Full Text PDFThe ability to image tissue morphogenesis in real-time and in 3-dimensions (3-D) remains an optical challenge. The advent of light-sheet fluorescence microscopy (LSFM) has advanced developmental biology and tissue regeneration research. In this review, we introduce a LSFM system in which the illumination lens reshapes a thin light-sheet to rapidly scan across a sample of interest while the detection lens orthogonally collects the imaging data.
View Article and Find Full Text PDF