Yersinia pestis is the causative agent of plague, a fulminant disease that is often fatal without antimicrobial treatment. Plasmid (IncA/C)-mediated multidrug resistance in Y. pestis was reported in 1995 in Madagascar and has generated considerable public health concern, most recently because of the identification of IncA/C multidrug-resistant plasmids in other zoonotic pathogens.
View Article and Find Full Text PDFBackground: In the United States, tularemia is caused by Francisella tularensis subsps. tularensis (type A) and holarctica (type B). Molecular subtyping has further divided type A into 2 subpopulations, A1 and A2.
View Article and Find Full Text PDFWe describe the isolation of a Francisella sp. from normally sterile sites in acutely ill patients in two different states within 2 years. Microbiologic and molecular analyses indicate that this organism represents a novel Francisella sp.
View Article and Find Full Text PDFThirty bartonella strains were isolated from the blood of black-tailed prairie dogs (Cynomys ludovicianus) from Boulder County, Colorado, USA. The bacteria appeared as small, fastidious, aerobic, Gram-negative rods. The partial sequences of the citrate synthase gene (gltA) demonstrated five unique genetic variants.
View Article and Find Full Text PDFThree strains of a novel Bartonella species (Bartonella tamiae) were isolated from human patients from Thailand. Sequence analysis of six chromosomal regions (16S rRNA, gltA, groEL, ftsZ, rpoB, and the intergenic spacer region) and phenotypical analysis supported the similarity of the three strains and placed them within the genus Bartonella separately from previously described species.
View Article and Find Full Text PDFTularemia in the United States is caused by 2 subspecies of Francisella tularensis, subspecies tularensis (type A) and subspecies holarctica (type B). We compared clinical and demographic features of human tularemia cases from 1964 to 2004 from 39 states in which an isolate was recovered and subtyped. Our data indicate that type A and type B infections differ with respect to affected populations, anatomic site of isolation, and geographic distribution.
View Article and Find Full Text PDF