Publications by authors named "Linda Callahan"

This article outlines a global study conducted by the Association of Biomedical Resource Facilities (ABRF) Light Microscopy Research Group (LMRG). The results present a novel 3D tissue-like biologically relevant standard sample that is affordable and straightforward to prepare. Detailed sample preparation, instrument-specific image acquisition protocols and image analysis methods are presented and made available to the community.

View Article and Find Full Text PDF

Adolescents and young adults (AYA) with advanced cancer have unequal access to and enrollment in clinical trials. Many AYA use online platforms to share their treatment experiences. The purpose of this analysis was to explore how AYA discuss clinical trials and their access to novel therapeutics through their blogs.

View Article and Find Full Text PDF

Understanding the interactions of nanoparticles (NPs) with skin is important from a consumer and occupational health and safety perspective, as well as for the design of effective NP-based transdermal therapeutics. Despite intense efforts to elucidate the conditions that permit NP penetration, there remains a lack of translatable results from animal models to human skin. The objectives of this study are to investigate the impact of common skin lotions on NP penetration and to quantify penetration differences of quantum dot (QD) NPs between freshly excised human and mouse skin.

View Article and Find Full Text PDF

The increasing use of nanoparticles (NPs) in technological applications and in commercial products has escalated environmental health and safety concerns. The detection of NPs in the environment and in biological systems is challenged by limitations associated with commonly used analytical techniques. In this paper we report on the development and characterization of NP binding antibodies, termed NProbes.

View Article and Find Full Text PDF

Adolescence is characterized by changes in both behavior and neural organization. During this period, the amygdala, a structure that mediates social and emotional behaviors, is changing in terms of neural and glia density. We examined cell proliferation within the amygdala of adolescent (post natal day (PND) 31) and adult (PND 70) male Sprague-Dawley rats using BrdU (bromodeoxyuridine) to label dividing cells.

View Article and Find Full Text PDF

17β-Estradiol (E(2)) plays important roles in functions of many tissues. E(2) effects are mediated by estrogen receptor (ER) α and β. ERs regulate transcriptions through estrogen-responsive element (ERE)-dependent and ERE-independent modes of action.

View Article and Find Full Text PDF

Neurodegenerative diseases are characterized by a number of features including the formation of inclusions, early synaptic degeneration and the selective loss of neurons. Molecules serving as links between these shared features have yet to be identified. Identifying candidates within the diseased microenvironment will open up novel avenues for therapeutic intervention.

View Article and Find Full Text PDF

Recent studies indicate that the antiapoptotic Bcl-X(L), one of five isoforms expressed by the Bcl-X gene, protects a variety of cell lines exposed to hyperoxia. However, its role in lung development and protection against oxidative stress in vivo is not known. Here, we show Bcl-X(L) is the predominant isoform expressed in the lung, and the only isoform detected in respiratory epithelium.

View Article and Find Full Text PDF

Paraptosis is the programmed cell death pathway that leads to cellular necrosis. Previously, rodent and human monocytes/macrophages killed glioma cells bearing the membrane macrophage colony stimulating factor (mM-CSF) through paraptosis, but the molecular mechanism of this killing process was never identified. We have demonstrated that paraptosis of rat T9 glioma cells can be initiated through a large potassium channel (BK)-dependent process initiated by reactive oxygen species.

View Article and Find Full Text PDF

Inflammatory mediators, such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta, appear integral in initiating and/or propagating Alzheimer's disease (AD)-associated pathogenesis. We have previously observed a significant increase in the number of mRNA transcripts encoding the pro-inflammatory cytokine TNF-alpha, which correlated to regionally enhanced microglial activation in the brains of triple transgenic mice (3xTg-AD) before the onset of overt amyloid pathology. In this study, we reveal that neurons serve as significant sources of TNF-alpha in 3xTg-AD mice.

View Article and Find Full Text PDF

The response of human peripheral blood mononuclear cells (PBMC) to cloned human HLA-A2+ U251 glioma cells (U251-2F11/TK) expressing membrane macrophage colony stimulating factor (mM-CSF) was investigated in vitro and in vivo. Enriched human monocytes derived from cancer patients produced a respiratory burst following 20min of interaction with mM-CSF expressing U251 glioma cells. This respiratory burst response was not observed in the enriched human monocytes following similar exposure to the viral vector control U251 (U251-VV) cells.

View Article and Find Full Text PDF

In this study, human monocytes/macrophages were observed to kill human U251 glioma cells expressing membrane macrophage colony-stimulating factor (mM-CSF) via a swelling and vacuolization process called paraptosis. Human monocytes responded to the mM-CSF-transduced U251 glioma cells, but not to viral vector control U251 glioma cells (U251-VV), by producing a respiratory burst within 20 min. Using patch clamp techniques, functional big potassium (BK) channels were observed on the membrane of the U251 glioma cell.

View Article and Find Full Text PDF

Drug resistance resulting from emergence of imatinib-resistant BCR-ABL point mutations is a significant problem in advanced-stage chronic myelogenous leukemia (CML). The BCR-ABL inhibitor, nilotinib (AMN107), is significantly more potent against BCR-ABL than imatinib, and is active against many imatinib-resistant BCR-ABL mutants. Phase 1/2 clinical trials show that nilotinib can induce remissions in patients who have previously failed imatinib, indicating that sequential therapy with these 2 agents has clinical value.

View Article and Find Full Text PDF

The orphan nuclear receptor Nurr1 is required for the development of the ventral mesencephalic dopaminergic neurons. These are the same neurons that are invariantly lost in patients with Parkinson's disease. Nurr1 mRNA expression is not confined to the developing midbrain, and yet Nurr1 appears to be essential for either the maturation of progenitors into fully post-mitotic dopaminergic neurons and/or once formed, their survival.

View Article and Find Full Text PDF

Because headache is a common side effect of electroconvulsive therapy (ECT), this study sought to determine the effectiveness of cryotherapy (i.e., a frozen gel band) in relieving pain in patients with post-ECT headaches, and whether headache intensity and physiological measurements could predict use of an alternative analgesic (rescue medication).

View Article and Find Full Text PDF

The Bcr-Abl tyrosine kinase oncogene causes chronic myelogenous leukemia (CML) and Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL). We describe a novel selective inhibitor of Bcr-Abl, AMN107 (IC50 <30 nM), which is significantly more potent than imatinib, and active against a number of imatinib-resistant Bcr-Abl mutants. Crystallographic analysis of Abl-AMN107 complexes provides a structural explanation for the differential activity of AMN107 and imatinib against imatinib-resistant Bcr-Abl.

View Article and Find Full Text PDF

Parkinson's disease pathogenesis proceeds through several phases, culminating in the loss of dopaminergic neurons of the substantia nigra (SN). Although the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of oxidative SN injury is frequently used to study degeneration of dopaminergic neurons in mice and non-human primates, an understanding of the temporal sequence of molecular events from inhibition of mitochondrial complex 1 to neuronal cell death is limited. Here, microarray analysis and integrative data mining were used to uncover pathways implicated in the progression of changes in dopaminergic neurons after MPTP administration.

View Article and Find Full Text PDF

The data presented here examine 2 hypotheses: 1) that viable but vulnerable single neurons remaining in the Alzheimer brain lose synaptic markers, and 2) that the extent of this loss is related to the disease state of these single neurons when disease state is defined by immunoreactivity. We used double immunohistochemistry (IHC) to define neurofibrillary tangle (NFT) and phosphorylation status of tau at selected defined epitopes. This double IHC was combined with quantitative in situ hybridization for message for the synaptic marker, synaptophysin, in 1,127 single hippocampal CA1 pyramidal neurons from 15 Alzheimer disease (AD) and 4 control cases.

View Article and Find Full Text PDF