Publications by authors named "Linda C Kurz"

Citrate synthase (CS) performs two half-reactions: the mechanistically intriguing condensation of acetyl-CoA with oxaloacetate (OAA) to form citryl-CoA and the subsequent, slower hydrolysis of citryl-CoA that generally dominates steady-state kinetics. The condensation reaction requires the abstraction of a proton from the methyl carbon of acetyl-CoA to generate a reactive enolate intermediate. The carbanion of that intermediate then attacks the OAA carbonyl to furnish citryl-CoA, the initial product.

View Article and Find Full Text PDF

The formation of all major intermediates in the reaction catalyzed by the citrate synthase from Thermoplasma acidophilum is accompanied by changes in tryptophan fluorescence. The largest change is the strong quenching observed on formation of the binary complex with substrate, oxaloacetate (OAA). The four tryptophan residues present in the enzyme have been changed to nonfluorescent ones in various combinations without major perturbations in protein stability, enzyme mechanism, or other physical properties.

View Article and Find Full Text PDF