Background: Although the mitotic arrest deficient protein MAD2B (MAD2L2) is thought to inhibit the anaphase promoting complex (APC) by binding to CDC20 and/or CDH1 (FZR1), its exact role in cell cycle control still remains to be established.
Methodology/principal Findings: Using a yeast two-hybrid interaction trap we identified the human clathrin light chain A (CLTA) as a novel MAD2B binding protein. A direct interaction was established in mammalian cells via GST pull-down and endogenous co-immunoprecipitation during the G2/M phase of the cell cycle.
Nijmegen breakage syndrome (NBS) is characterized by genome instability and cancer predisposition. NBS patients contain a mutation in the NBS1 gene, which encodes the NBS1 component of the DNA double-strand break (DSB) response complex MRE11/RAD50/NBS1. To investigate the NBS phenotype in more detail, we combined the mouse mimic of the most common patient mutation (Nbs1(Delta B/DeltaB)) with a Rad54 null mutation, which diminishes homologous recombination.
View Article and Find Full Text PDFBackground: Previously, we identified the mitotic arrest deficient protein MAD2B (MAD2L2) as a bona fide interactor of the renal cell carcinoma (RCC)-associated protein PRCC. In addition, we found that fusion of PRCC with the transcription factor TFE3 in t(X;1)(p11;q21)-positive RCCs results in an impairment of this interaction and, concomitantly, an abrogation of cell cycle progression. Although MAD2B is thought to inhibit the anaphase promoting complex (APC) by binding to CDC20 and/or CDH1(FZR1), its exact role in cell cycle control still remains to be established.
View Article and Find Full Text PDFPreviously, we found that in t(X;1)(p11;q21)-positive renal cell carcinomas the bHLH-LZ transcription factor TFE3 is fused to a novel protein designated PRCC. In addition, we found that the PRCCTFE3 fusion protein, which has retained all known functional domains of TFE3, acts as a more potent transcriptional activator than wild type TFE3. We also found that PRCCTFE3 expression confers in vitro and in vivo transformation onto various cell types, including those of the kidney.
View Article and Find Full Text PDFDuring the last years significant new insights have been gained into the mechanism and biological relevance of DNA double-strand break (DSB) repair in relation to genome stability. DSBs are a highly toxic DNA lesion, because they can lead to chromosome fragmentation, loss and translocations, eventually resulting in cancer. DSBs can be induced by cellular processes such as V(D)J recombination or DNA replication.
View Article and Find Full Text PDFV(D)J recombination of Ig and TCR loci is a stepwise process during which site-specific DNA double-strand breaks (DSBs) are made by RAG1/RAG2, followed by DSB repair by nonhomologous end joining. Defects in V(D)J recombination result in SCID characterized by absence of mature B and T cells. A subset of T-B-NK+ SCID patients is sensitive to ionizing radiation, and the majority of these patients have mutations in Artemis.
View Article and Find Full Text PDFDNA double-strand break repair by non-homologous end-joining (NHEJ) is generally considered to be an imprecise repair pathway. In order to study repair of a blunt, 5' phosphorylated break in the DNA of mammalian fibroblasts, we used the E. coli cut-and-paste type transposon Tn5.
View Article and Find Full Text PDF