The pH-dependent binding strengths and modes of the organometallic [(η--cym)M(HO)] (M = Ru, Os; -cym = 1-methyl-4-isopropylbenzene) or [(η-Cp*)M(HO)] (M = Rh, Ir; Cp* = pentamethylcyclopentadienyl anion) cations towards iminodiacetic acid (HIda) and its biorelevant mono- and diphosphonate derivatives N-(phosphonomethyl)-glycine (HIdaP) and iminodi(methylphosphonic acid) (HIda2P) was studied in an aqueous solution. The results showed that all three of the ligands form 1:1 complexes via the tridentate (O,N,O) donor set, for which the binding mode was further corroborated by the DFT method. Although with IdaP and Ida2P in mono- and bis-protonated species, where H might also be located at the non-coordinating N atom, the theoretical calculations revealed the protonation of the phosphonate group(s) and the tridentate coordination of the phosphonate ligands.
View Article and Find Full Text PDFA novel ambidentate dipeptide conjugate (H(L1)) containing N-donor atoms of the peptide part and an (O,O) chelate at the hydroxypyridinone (HP) ring is synthesized and characterized. It is hoped that this chelating ligand can be useful to obtain multitargeted Co(III)/Pt(II) dinuclear complexes with anticancer potential. The Pd(II) (as a Pt(II) model but with faster ligand exchange reactions) binding strength of the ligand was studied in an aqueous solution with the combined use of pH-potentiometry and NMR.
View Article and Find Full Text PDFComplexes that incorporate both ligand(s) and metal(s) exhibiting cytotoxic activity can especially be interesting to develop multifunctional drug molecules with desired activities. In this review, the limited number of solution results collected in our laboratory on the complexes of Pd(II) and two other platinum group metals-the half-sandwich type, [(η--cym)Ru(HO)], and [(η-Cp*)Rh(HO)]-with hydroxamic acid derivatives of three amino acids, two imidazole analogues, and four small peptides are summarized and evaluated. Unlike the limited number of coordination sites of these metal ions (four and three for Pd(II) and the organometallic cations, respectively), the ligands discussed here offer a relatively high number of donor atoms as well as variation in their position within the ligands, resulting in a large versatility of the likely coordination modes.
View Article and Find Full Text PDFThere has been a long tradition for a broad spectrum of applications of both natural and synthetic hydroxamic acids and derivatives. Even nowadays, a huge number of newly designed representatives (from different monohydroxamate-based compounds to siderophore conjugates) are used to develop potential drug candidates with desired activities. Since these compounds are effective metal-chelating agents, their biological roles and actions as well as their various applications, e.
View Article and Find Full Text PDFBy using various techniques (pH-potentiometry, UV-Visible spectrophotometry, H and O-NMR, EPR, ESI-MS), first time in the literature, solution equilibrium study has been performed on complexes of dipeptide and tripeptide hydroxamic acids-AlaAlaNHOH, AlaAlaN(Me)OH, AlaGlyGlyNHOH, and AlaGlyGlyN(Me)OH-with 4d metals: the essential Mo(VI) and two half-sandwich type cations, [(η--cym)Ru(HO)] as well as [(η-Cp*)Rh(HO)], the latter two having potential importance in cancer therapy. The tripeptide derivatives have also been studied with some biologically important 3d metals, such as Fe(III), Ni(II), Cu(II), and Zn(II), in order to compare these new results with the corresponding previously obtained ones on dipeptide hydroxamic acids. Based on the outcomes, the effects of the type of metal ions, the coordination number, the number and types of donor atoms, and their relative positions to each other on the complexation have been evaluated in the present work.
View Article and Find Full Text PDFThe first report on the anti-cancer activity of the compound Metvan, [VO(Mephen)(SO)], where Mephen is 4,7-dimethyl-1,10-phenanthroline, dates back to 2001. Although it was immediately identified as one of the most promising multitargeted anti-cancer V compounds, no development on the medical experimentation was carried out. One of the possible reasons is the lack of information on its speciation in aqueous solution and its thermodynamic stability, factors which influence the transport in the blood and the final form which reaches the target organs.
View Article and Find Full Text PDFThe interaction of the potential anti-tumor agent vanadocene dichloride ([Cp2VCl2] or VDC) with some relevant bioligands of the cytosol such as proteins (Hb), amino acids (glycine and histidine), NADH derivatives (NADH, NADPH, NAD(+) and NADP(+)), reductants (GSH and ascorbic acid), phosphates (HPO4(2-), P2O7(4-), cAMP, AMP, ADP and ATP) and carboxylate derivatives (lactate) and its uptake by red blood cells were studied. The results indicated that [Cp2VCl2] transforms at physiological pH into [Cp2V(OH)2] and that only HPO4(2-), P2O7(4-), lactate, ATP and ADP form mixed species with the [Cp2V](2+) moiety replacing the two hydroxide ions. EPR and electronic absorption spectroscopy, agarose gel electrophoresis and spin trapping measurements allow excluding any direct interaction and/or intercalation with DNA and the formation of reactive oxygen species (ROS) in Fenton-like reactions.
View Article and Find Full Text PDFThe coordination mode and geometry in aqueous solution of oxidovanadium(IV) complexes formed by a third-generation cephalosporin, ceftriaxone (H3cef), were studied by spectroscopic (EPR, electron paramagnetic resonance), pH-potentiometric and computational (DFT, density functional theory) methods. The behavior of the model systems containing 6-hydroxy-2-methyl-3-thioxo-3,4-dihydro-1,2,4-triazine-5(2H)-one (H2hmtdt) and 3-benzylthio-6-hydroxy-2-methyl-1,2,4-triazine-5(2H)-one (Hbhmt) was examined for comparison. The stability of the tautomers of ceftriaxone and 6-hydroxy-2-methyl-3-thioxo-3,4-dihydro-1,2,4-triazine-5(2H)-one in the neutral, mono- and bi-anionic form was calculated by DFT methods, both in the gas phase and in aqueous solution, and the electron density on the oxygen atoms of the hydroxytriazinone ring was related to the pKa of the ligands.
View Article and Find Full Text PDFThe interaction between [Ru(η(6)-p-cym)(H(2)O)(3)](2+) and an important low molecular weight serum component, citric acid (citrH(3)), was studied with the aid of combined pH-potentiometric, (1)H NMR, (13)C NMR and electrospray ionization mass spectrometry (ESI-MS) methods in aqueous solution. For comparative purposes propane-1,2,3-tricarboxylic acid (tricarballylic acid, tricH(3)) having no alcoholic-OH group in position 2 was also investigated. Stoichiometries, stability constants and the most plausible solution structures of the complexes formed in the systems were determined.
View Article and Find Full Text PDFThe biotransformation in the blood serum of the two anti-diabetic agents [VO(ema)(2)] - or BEOV - and [VO(koj)(2)] formed by ethylmaltol (Hema) and kojic acid (Hkoj) was studied with EPR spectroscopy, pH-potentiometry and DFT calculations. For comparison, the behavior of the systems with tropolone (Htrop) was also analyzed. The interaction of [VO(ema)(2)] and [VO(koj)(2)] with the most important bioligands of the serum, lactic (Hlact) and citric acid (H(3)citr), human serum transferrin (hTf), human serum albumin (HSA) and immunoglobulin G (IgG) was examined and discussed.
View Article and Find Full Text PDFThe interaction of the potent anti-diabetic agent bis(maltolato)oxidovanadium(IV) (BMOV) with some proteins of blood serum was studied by EPR spectroscopy, pH-potentiometry and DFT calculations. The formation of cis-VO(ma)(2)(hTf), cis-VO(ma)(2)(HSA) and cis-VO(ma)(2)(IgG), their role in the biotransformation in vivo and the mechanism of transport of BMOV in blood are discussed.
View Article and Find Full Text PDFHydrolysis of an organometallic cation, [Ru(η(6)-p-cym)(H(2)O)(3)](2+) (p-cym = 1-isopropyl-4-methylbenzene), in the presence of 0.20 M KNO(3) or KCl as supporting electrolyte was studied in detail with the combined use of pH-potentiometry, (1)H-NMR, UV-VIS and ESI-TOF-MS. Stoichiometry and stability constants of chlorido, hydroxido and mixed chlorido-hydroxido complexes formed in aqueous solution have been determined.
View Article and Find Full Text PDFThe interaction between [Ru(η(6)-p-cym)(H(2)O)(3)](2+) and (O,O) type chelators with different basicity of the donor atoms was studied using combined pH-potentiometric, (1)H-NMR and ESI-TOF-MS techniques. The studied nine ligands are building blocks of reported complexes with antitumor activity or may model (O,O) donor serum components capable of interacting with the administered half-sandwich ruthenium(II) type drug. Composition and stability constants of the [Ru(η(6)-p-cym)(O,O)Y] type species (Y: H(2)O or OH(-)) were determined (T = 25.
View Article and Find Full Text PDF