The presence of high affinity ligands for the aryl hydrocarbon receptor (AhR) in cell culture medium has generally been overlooked. Such compounds may confound mechanistic studies of the important AhR regulatory network. Numerous reports have described that light exposed cell culture medium induces AhR-dependent activity.
View Article and Find Full Text PDFChem Biol Interact
October 2004
The physiological role of the aryl hydrocarbon receptor (AhR), a member of the basic helix-loop-helix PER-ARNT-SIM (PAS) transcription factor family is not known. We have suggested that the AhR is involved in light signaling through binding of photoproducts with high AhR affinity. This suggestion is based on (i) the high AhR affinity of the tryptophan photoproduct formylindolo[3,2-b]carbazole (FICZ), (ii) the induction of rapid and transient expression of AhR-regulated genes by FICZ and by extracts of UV-irradiated tryptophan as well as (iii) the fact that light induces the AhR-regulated cytochrome P450s CYP1A1, CYP1B1 and CYP2S1.
View Article and Find Full Text PDFThe tryptophan photoproduct 6-formylindolo[3,2-b]carbazole (FICZ) exhibits the highest aryl hydrocarbon receptor (AhR) binding affinity reported so far. In different cells, in vitro, both extracts of UV-irradiated tryptophan and the synthesized pure compound FICZ induce a rapid and transient expression of AhR-regulated genes. The transient induction suggests that the biotransformation gene battery induced by AhR activation takes part in a metabolic degradation of the ligand, whereby a low steady-state level is regained.
View Article and Find Full Text PDF