Aims: The main objectives of the present study was to establish an animal model of decompression sickness (DCS) after heliox saturation diving, and to use this model to evaluate possible morphological changes in the CNS induced by DCS using structural MRI.
Methods: Two groups of rats were pressurized with heliox to 5 bar (pO2 = 50 kPa). The saturation time was three hours; decompression rate was 1 bar/10 seconds or 1 bar/20 seconds.
Stroma properties affect carcinoma physiology and direct malignant cell development. Here we present data showing that α(V)β(3) expressed by stromal cells is involved in the control of interstitial fluid pressure (IFP), extracellular volume (ECV) and collagen scaffold architecture in experimental murine carcinoma. IFP was elevated and ECV lowered in syngeneic CT26 colon and LM3 mammary carcinomas grown in integrin β(3)-deficient compared to wild-type BALB/c mice.
View Article and Find Full Text PDFIntroduction: Dehydration may increase the risk for decompression sickness (DCS). Since DCS most probably is caused by endogenous gas phase formation, we hypothesized that decompression will induce more venous gas emboli (VGE) in dehydrated rats compared to controls.
Methods: Two groups of rats were pressurized to 0.
The stroma of carcinomas shares several characteristics with inflamed tissues including a distorted vasculature, active angiogenesis and macrophage infiltration. In addition, the tumor interstitial fluid pressure (P(IF)) of the stroma is pathologically elevated. We show here that bevacizumab [rhuMab vascular endothelial growth factor (VEGF), Avastin], a monoclonal antibody to VEGF, at a dose of 5 mg/kg modulated inflammation in KAT-4 xenograft human anaplastic thyroid carcinoma tissue.
View Article and Find Full Text PDFChemotherapy of solid tumors is presently largely ineffective at dosage levels that are compatible with survival of the patient. Here, it is argued that a condition of raised interstitial fluid pressure (IFP) that can be observed in many tumors is a major factor in preventing optimal access of systemically administered chemotherapeutic agents. Using prostaglandin E1-methyl ester (PGE1), which is known transiently to reduce IFP, it was shown that 5-fluorouracil (5-FU) caused significant growth inhibition on two experimental tumors in rats but only after administration of PGE1.
View Article and Find Full Text PDF