Purpose: To develop a deep-learning model that leverages the spatial and temporal information from dynamic contrast-enhanced magnetic resonance (DCE MR) brain imaging in order to automatically estimate a vascular function (VF) for quantitative pharmacokinetic (PK) modeling.
Methods: Patients with glioblastoma multiforme were scanned post-resection approximately every 2 months using a high spatial and temporal resolution DCE MR imaging sequence ( s and cm ). A region over the transverse sinus was manually drawn in the dynamic T1-weighted images to provide a ground truth VF.
Introduction: A number of MRI methods have been proposed to be useful, quantitative biomarkers of neurodegeneration in ageing. The Calgary Normative Study (CNS) is an ongoing single-centre, prospective, longitudinal study that seeks to develop, test and assess quantitative magnetic resonance (MR) methods as potential biomarkers of neurodegeneration. The CNS has three objectives: first and foremost, to evaluate and characterise the dependence of the selected quantitative neuroimaging biomarkers on age over the adult lifespan; second, to evaluate the precision, variability and repeatability of quantitative neuroimaging biomarkers as part of biomarker validation providing proof-of-concept and proof-of-principle; and third, provide a shared repository of normative data for comparison to various disease cohorts.
View Article and Find Full Text PDFBackground: Using magnetic resonance (MR) imaging for navigating catheters has several advantages when compared with the current "gold standard" modality of X-ray imaging. A significant drawback to interventional MR is inferior temporal and spatial resolutions, as high spatial resolution images cannot be collected and displayed at rates equal to X-ray imaging. In particular, passive MR catheter tracking experiments that use positive contrast mechanisms have poor temporal imaging rates and signal-to-noise ratio.
View Article and Find Full Text PDFTo determine the initial feasibility of using magnetic resonance (MR) imaging to detect early atherosclerosis, we investigated inflammatory cells labeled with a positive contrast agent in an endothelial cell-based testing system. The human monocytic cell line THP-1 was labeled by overnight incubation with a gadolinium colloid (Gado CELLTrack) prior to determination of the in vitro release profile from T1-weighted MR images. Next, MR signals arising from both a synthetic model of THP-1/human umbilical vein endothelial cell (HUVEC) accumulation and the dynamic adhesion of THP-1 cells to activated HUVECs under flow were obtained.
View Article and Find Full Text PDFPurpose: To develop an appropriate method to evaluate the time-course of diffusion and perfusion changes in a clinically relevant animal model of ischemic stroke and to examine lesion progression on MR images. An exploration of acute stroke infarct expansion was performed in this study by using a new methodology for developing time-to-infarct maps based on the time at which each voxel becomes infarcted. This enabled definition of homogeneous regions from the heterogeneous stroke infarct.
View Article and Find Full Text PDFPurpose: To describe a canine embolic stroke model that is appropriate for endovascular procedure evaluations and develop local cerebral blood flow (CBF) maps to monitor the progression of stroke and thrombolysis. In the future, MR may displace X-ray imaging in some endovascular procedures, such as intraarterial (IA) thrombolysis for stroke therapy, due to increased monitoring capabilities. For MR to attain its full potential in endovascular therapy, the development of appropriate disease models and monitoring techniques is essential.
View Article and Find Full Text PDF