Publications by authors named "Linda A Tephly"

The release of reactive oxygen species (ROS) and cytokines by alveolar macrophages has been demonstrated in asbestos-induced pulmonary fibrosis, but the mechanism linking alveolar macrophages to the pathogenesis is not known. The GTPase Rac1 is a second messenger that plays an important role in host defense. In this study, we demonstrate that Rac1 null mice are protected from asbestos-induced pulmonary fibrosis, as determined by histological and biochemical analysis.

View Article and Find Full Text PDF

Synthesis of phosphatidylcholine, the major phospholipid of animal cell membranes, requires the key enzyme cytidylyltransferase (CCTalpha). Cysteine sulfhydryls within CCTalpha are needed for full catalytic activity. Here we show that prostaglandin 15-deoxy-Delta12,14-PGJ2 (15d-PGJ2) inactivates CCTalpha by inducing generation of reactive oxidant species and the appearance of a cross-linked CCTalpha dimer in cells.

View Article and Find Full Text PDF

Inhalation of crystalline silica and asbestos is known to cause the progressive pulmonary fibrotic disorders silicosis and asbestosis, respectively. Although alveolar macrophages are believed to initiate these inflammatory responses, the mechanism by which this occurs has been unclear. Here we show that the inflammatory response and subsequent development of pulmonary fibrosis after inhalation of silica is dependent on the Nalp3 inflammasome.

View Article and Find Full Text PDF

TNF-alpha is associated with the development of interstitial fibrosis. We have demonstrated that the p38 mitogen-activated protein (MAP) kinase regulates TNF-alpha expression in monocytes exposed to asbestos. In this report, we asked if extracellular signal-regulated kinase (ERK) was also involved in TNF-alpha expression in monocytes exposed to asbestos.

View Article and Find Full Text PDF

Alveolar macrophages, which generate high levels of reactive oxygen species, especially O(2)(*-), are involved in the recruitment of neutrophils to sites of inflammation and injury in the lung, and the generation of chemotactic proteins triggers this cellular recruitment. In this study, we asked whether O(2)(*-) generation in alveolar macrophages had a role in the expression of chemokines. Specifically, we hypothesized that O(2)(*-) generation is necessary for chemokine expression in alveolar macrophages after TNF-alpha stimulation.

View Article and Find Full Text PDF

Monocytic cells are integral in the pathogenesis of inflammatory disorders. We have shown previously that asbestos-induced p38 mitogen-activated protein (MAP) kinase activation and TNF-alpha expression are mediated by H(2)O(2) in blood monocytes. Due to the high expression and activity of catalase and glutathione peroxidase, normal alveolar macrophages do not respond in a manner similar to that of blood monocytes.

View Article and Find Full Text PDF

Surfactant deficiency contributes to acute lung injury and may result from the elaboration of bioactive lipids such as oxysterols. We observed that the oxysterol 22-hydroxycholesterol (22-HC) in combination with its obligate partner, 9-cis-retinoic acid (9-cis-RA), decreased surfactant phosphatidylcholine (PtdCho) synthesis by increasing phosphorylation of the regulatory enzyme CTP:phosphocholine cytidylyltransferase-alpha (CCTalpha). Phosphorylation of CCTalpha decreased its activity.

View Article and Find Full Text PDF

Results are presented which support the hypothesis that adequate steady-state levels of hydrogen peroxide (H2O2) are required to overcome the effects of high catalase and glutathione peroxidase (GPx) expression for p38 mitogen-activated protein (MAP) kinase activation and tumor necrosis factor (TNF)-alpha gene expression in human alveolar macrophages stimulated with asbestos. We found significant differences in the types and amounts of reactive oxygen species generated in human blood monocytes compared with human alveolar macrophages. This difference in reactive oxygen species production is related, in part, to the differences in antioxidant enzyme expression and activity.

View Article and Find Full Text PDF