Publications by authors named "Linda A Stevens"

Arginine-specific mono-adenosine diphosphate (ADP)-ribosylation is a nicotinamide adenine dinucleotide (NAD)-dependent, reversible post-translational modification involving the transfer of an ADP-ribose from NAD by bacterial toxins and eukaryotic ADP-ribosyltransferases (ARTs) to arginine on an acceptor protein or peptide. ADP-ribosylarginine hydrolase 1 (ARH1) catalyzes the cleavage of the ADP-ribose-arginine bond, regenerating (arginine)protein. Arginine-specific mono-ADP-ribosylation catalyzed by bacterial toxins was first identified as a mechanism of disease pathogenesis.

View Article and Find Full Text PDF

ADP-ribosyltransferases transfer ADP-ribose from β-NAD to acceptors; ADP-ribosylated acceptors are cleaved by ADP-ribosyl-acceptor hydrolases (ARHs) and proteins containing ADP-ribose-binding modules termed macrodomains. On the basis of the ADP-ribosyl-arginine hydrolase 1 (ARH1) stereospecific hydrolysis of α-ADP-ribosyl-arginine and the hypothesis that α-NAD is generated as a side product of β-NAD/ NADH metabolism, we proposed that α-NAD was a substrate of ARHs and macrodomain proteins. Here, we report that ARH1, ARH3, and macrodomain proteins (i.

View Article and Find Full Text PDF
Article Synopsis
  • Excessive PAR accumulation due to PARP1 activation can cause significant cellular damage and death, while its degradation is handled by enzymes like PARG and ARH3.
  • A study revealed that a mutation in the ARH3 gene in a family led to a nonfunctional protein, causing neurodegeneration and increased sensitivity to oxidative stress, suggesting that PARP1 inhibitors could help protect against neurodegeneration in patients with ARH3 deficiency.
View Article and Find Full Text PDF

Mono-ADP-ribosylation of an (arginine) protein catalyzed by ADP-ribosyltransferase 1 (ART1) - i.e., transfer of ADP-ribose from NAD to arginine - is reversed by ADP-ribosylarginine hydrolase 1 (ARH1) cleavage of the ADP-ribose-arginine bond.

View Article and Find Full Text PDF

Methods are described for determination of arginine-specific mono-ADP-ribosyltransferase activity of purified proteins and intact cells by monitoring the transfer of ADP-ribose from NAD to a model substrate, e.g., arginine, agmatine, and peptide (human neutrophil peptide-1 [HNP1]), and for the nonenzymatic hydrolysis of ADP-ribose-arginine to ornithine, a noncoded amino acid.

View Article and Find Full Text PDF

Activated neutrophils, recruited to the airway of diseased lung, release human neutrophil peptides (HNP1-4) that are cytotoxic to airway cells as well as microbes. Airway epithelial cells express arginine-specific ADP ribosyltransferase (ART)-1, a GPI-anchored ART that transfers ADP-ribose from NAD to arginines 14 and 24 of HNP-1. We previously reported that ADP-ribosyl-arginine is converted nonenzymatically to ornithine and that ADP-ribosylated HNP-1 and ADP-ribosyl-HNP-(ornithine) were isolated from bronchoalveolar lavage fluid of a patient with idiopathic pulmonary fibrosis, indicating that these reactions occur in vivo.

View Article and Find Full Text PDF

A molecule that treats multiple age-related diseases would have a major impact on global health and economics. The SIRT1 deacetylase has drawn attention in this regard as a target for drug design. Yet controversy exists around the mechanism of sirtuin-activating compounds (STACs).

View Article and Find Full Text PDF

Defensins (e.g., human neutrophil peptides, or HNPs) contribute to innate immunity through diverse actions, including microbial killing; high concentrations are present in the lung in response to inflammation.

View Article and Find Full Text PDF

Lymphangioleiomyomatosis (LAM), a rare multisystem disease found primarily in women of childbearing age, is characterized by the proliferation of abnormal smooth muscle-like cells, LAM cells, that form nodules in the pulmonary interstitium. Proliferation of LAM cells results, in part, from dysfunction in tuberous sclerosis complex (TSC) genes TSC1 (hamartin) and/or TSC2 (tuberin). Identification of LAM cells in donor lungs, their isolation from blood, and their presence in urine, chylous ascites, and pleural effusions are consistent with their ability to metastasize.

View Article and Find Full Text PDF

NAD functions in multiple aspects of cellular metabolism and signaling through enzymes that covalently transfer ADP-ribose from NAD to acceptor proteins, thereby altering their function. NAD is a substrate for two enzyme families, mono-ADP-ribosyltransferases (mARTs) and poly(ADP-ribose) polymerases (PARPs), that covalently transfer an ADP-ribose monomer or polymer, respectively, to acceptor proteins. ART2, a mART, is a phenotypic marker of immunoregulatory cells found on the surface of T lymphocytes, including intestinal intraepithelial lymphocytes (IELs).

View Article and Find Full Text PDF

Epithelial cells lining human airways and cells recruited to airways participate in the innate immune response in part by releasing human neutrophil peptides (HNP). Arginine-specific ADP-ribosyltransferases (ART) on the surface of these cells can catalyze the transfer of ADP-ribose from NAD to proteins. We reported that ART1, a mammalian ADP-ribosyltransferase, present in epithelial cells lining the human airway, modified HNP-1, altering its function.

View Article and Find Full Text PDF

ART2a (RT6.1) and ART2b (RT6.2) are NAD glycohydrolases (NADases) that are linked to T lymphocytes by glycosylphosphatidylinositol anchors.

View Article and Find Full Text PDF

In human airways, epithelial cells lining the lumen and intraluminal cells (e.g., polymorphonuclear cells) participate in the innate immune response.

View Article and Find Full Text PDF

Lymphangioleiomyomatosis (LAM) is a disease of unknown etiology that is characterized by the proliferation of abnormal smooth muscle cells (LAM cells) in the lung, which leads to cystic parenchymal destruction and progressive respiratory failure. Recent evidence suggests that the proliferative and invasive nature of LAM cells may be due, in part, to somatic mutations in the TSC2 gene, which has been implicated in the pathogenesis of tuberous sclerosis complex. Here, we describe the clinical and molecular characteristics of LAM, as well as the efforts now under way to understand the genetic and biochemical factors that lead to progressive pulmonary destruction and, ultimately, to lung transplantation or death.

View Article and Find Full Text PDF