Publications by authors named "Linda A Schuler"

Background: Most patients with estrogen receptor positive (ER+) breast cancer do not respond to immune checkpoint inhibition (ICI); the tumor microenvironment (TME) of these cancers is generally immunosuppressive and contains few tumor-infiltrating lymphocytes. Radiation therapy (RT) can increase tumor inflammation and infiltration by lymphocytes but does not improve responses to ICIs in these patients. This may result, in part, from additional effects of RT that suppress anti-tumor immunity, including increased tumor infiltration by myeloid-derived suppressor cells and regulatory T cells.

View Article and Find Full Text PDF

Radiation therapy (RT) activates an in situ vaccine effect when combined with immune checkpoint blockade (ICB), yet this effect may be limited because RT does not fully optimize tumor antigen presentation or fully overcome suppressive mechanisms in the tumor-immune microenvironment. To overcome this, we develop a multifunctional nanoparticle composed of polylysine, iron oxide, and CpG (PIC) to increase tumor antigen presentation, increase the ratio of M1:M2 tumor-associated macrophages, and enhance stimulation of a type I interferon response in conjunction with RT. In syngeneic immunologically "cold" murine tumor models, the combination of RT, PIC, and ICB significantly improves tumor response and overall survival resulting in cure of many mice and consistent activation of tumor-specific immune memory.

View Article and Find Full Text PDF

Prolactin coordinates with the ovarian steroids to orchestrate mammary development and lactation, culminating in nourishment and an increasingly appreciated array of other benefits for neonates. Its central activities in mammary epithelial growth and differentiation suggest that it plays a role(s) in breast cancer, but it has been challenging to identify its contributions, essential for incorporation into prevention and treatment approaches. Large prospective epidemiologic studies have linked higher prolactin exposure to increased risk, particularly for ER+ breast cancer in postmenopausal women.

View Article and Find Full Text PDF

Estrogen receptor alpha (ERα) marks heterogeneous breast cancers which display a repertoire of somatic genomic mutations and an immune environment that differs from other breast cancer subtypes. These cancers also exhibit distinct biological behaviors; despite an overall better prognosis than HER2+ or triple negative breast cancers, disseminated dormant cells can lead to disease recurrence decades after the initial diagnosis and treatment. Estrogen is the best studied driver of these cancers, and antagonism or reduction of estrogen activity is the cornerstone of therapeutic approaches.

View Article and Find Full Text PDF

Prolactin (PRL) cooperates with other factors to orchestrate mammary development and lactation, and is epidemiologically linked to higher risk for breast cancer. However, how PRL collaborates with oncogenes to foster tumorigenesis and influence breast cancer phenotype is not well understood. To understand its interactions with canonical Wnt signals, which elevate mammary stem cell activity, we crossed heterozygous NRL-PRL mice with Apc mice and treated pubertal females with a single dose of mutagen.

View Article and Find Full Text PDF

Accumulating evidence suggests that our ability to predict chemical effects on breast cancer is limited by a lack of physiologically relevant in vitro models; the typical in vitro breast cancer model consists of the cancer cell and excludes the mammary microenvironment. As the effects of the microenvironment on cancer cell behavior becomes more understood, researchers have called for the integration of the microenvironment into in vitro chemical testing systems. However, given the complexity of the microenvironment and the variety of platforms to choose from, identifying the essential parameters to include in a chemical testing platform is challenging.

View Article and Find Full Text PDF

Metastatic, antiestrogen resistant estrogen receptor α positive (ER+) breast cancer is the leading cause of breast cancer deaths in USA women. While studies have demonstrated the importance of the stromal tumor microenvironment in cancer progression and therapeutic responses, effects on the responses of ER+ cancers to estrogen and antiestrogens are poorly understood, particularly in the complex in vivo environment. In this study, we used an estrogen responsive syngeneic mouse model to interrogate how a COL1A1-enriched fibrotic ECM modulates integrated hormonal responses in cancer progression.

View Article and Find Full Text PDF

The NRL-PRL murine model, defined by mammary-selective transgenic rat prolactin ligand rPrl expression, establishes spontaneous ER+ mammary tumors in nulliparous females, mimicking the association between elevated prolactin (PRL) and risk for development of ER+ breast cancer in postmenopausal women. Whole-genome and exome sequencing in a discovery cohort (n = 5) of end-stage tumors revealed canonical activating mutations and copy number amplifications of Kras. The frequent mutations in this pathway were validated in an extension cohort, identifying activating Ras alterations in 79% of tumors (23 of 29).

View Article and Find Full Text PDF

Metastatic estrogen receptor alpha positive (ERα+) cancers account for most breast cancer mortality. Cancer stem cells (CSCs) and dense/stiff extracellular matrices are implicated in aggression and therapy resistance. We examined this interplay and response to mTOR inhibition using ERα+ adenocarcinomas from NRL-PRL females in combination with Col1a1 (mCol1a1) mice, which accumulate collagen-I around growing tumors.

View Article and Find Full Text PDF

Prolactin (PRL) and estrogen cooperate in lobuloalveolar development of the mammary gland and jointly regulate gene expression in breast cancer cells . Canonical PRL signaling activates STAT5A/B, homologous proteins that have different target genes and functions. Although STAT5A/B are important for physiological mammary function and tumor pathophysiology, little is known about regulation of their expression, particularly of STAT5B, and the consequences for hormone action.

View Article and Find Full Text PDF

Although antiestrogen therapies are successful in many patients with estrogen receptor alpha-positive (ERα) breast cancer, 25% to 40% fail to respond. Although multiple mechanisms underlie evasion of these treatments, including tumor heterogeneity and drug-resistant cancer stem cells (CSC), further investigations have been limited by the paucity of preclinical ERα tumor models. Here, we examined a mouse model of prolactin-induced aggressive ERα breast cancer, which mimics the epidemiologic link between prolactin exposure and increased risk for metastatic ERα tumors.

View Article and Find Full Text PDF

Hormones drive mammary development and function and play critical roles in breast cancer. Epidemiologic studies link prolactin (PRL) to increased risk for aggressive cancers that express estrogen receptor α (ERα). However, in contrast to ovarian steroids, PRL actions on the mammary gland outside of pregnancy are poorly understood.

View Article and Find Full Text PDF

Background: The development and progression of estrogen receptor alpha positive (ERα+) breast cancer has been linked epidemiologically to prolactin. However, activation of the canonical mediator of prolactin, STAT5, is associated with more differentiated cancers and better prognoses. We have reported that density/stiffness of the extracellular matrix potently modulates the repertoire of prolactin signals in human ERα + breast cancer cells in vitro: stiff matrices shift the balance from the Janus kinase (JAK)2/STAT5 cascade toward pro-tumor progressive extracellular regulated kinase (ERK)1/2 signals, driving invasion.

View Article and Find Full Text PDF

Estrogen receptor α positive (ERα+) breast cancer accounts for most breast cancer deaths. Both prolactin (PRL) and extracellular matrix (ECM) stiffness/density have been implicated in metastatic progression of this disease. We previously demonstrated that these factors cooperate to fuel processes involved in cancer progression.

View Article and Find Full Text PDF

Personalized cancer therapy focuses on characterizing the relevant phenotypes of the patient, as well as the patient's tumor, to predict the most effective cancer therapy. Historically, these methods have not proven predictive in regards to predicting therapeutic response. Emerging culture platforms are designed to better recapitulate the in vivo environment, thus, there is renewed interest in integrating patient samples into in vitro cancer models to assess therapeutic response.

View Article and Find Full Text PDF

Breast cancers that express estrogen receptor alpha (ERα+) constitute the majority of breast tumors. Estrogen is a major driver of their growth, and targeting ER-mediated signals is a largely successful primary therapeutic strategy. Nonetheless, ERα+ tumors also result in the most breast cancer mortalities.

View Article and Find Full Text PDF

Elevated exposure to prolactin (PRL) is epidemiologically associated with an increased risk of aggressive ER+ breast cancer. To understand the underlying mechanisms and crosstalk with other oncogenic factors, we developed the NRL-PRL mouse. In this model, mammary expression of a rat prolactin transgene raises local exposure to PRL without altering estrous cycling.

View Article and Find Full Text PDF

The circadian clock plays a significant role in many aspects of female reproductive biology, including estrous cycling, ovulation, embryonic implantation, onset of puberty, and parturition. In an effort to link cell-specific circadian clocks to their specific roles in female reproduction, we used the promoter that controls expression of Steroidogenic Factor-1 (SF1) to drive Cre-recombinase-mediated deletion of the brain muscle arnt-like 1 (Bmal1) gene, known to encode an essential component of the circadian clock (SF1-Bmal1(-/-)). The resultant SF1-Bmal1(-/-) females display embryonic implantation failure, which is rescued by progesterone supplementation, or bilateral or unilateral transplantation of wild-type ovaries into SF1-Bmal1(-/-) dams.

View Article and Find Full Text PDF

Resistance of estrogen receptor positive (ERα+) breast cancers to antiestrogens is a major factor in the mortality of this disease. Although activation of ERα in the absence of ligand is hypothesized to contribute to this resistance, the potency of this mechanism in vivo is not clear. Epidemiologic studies have strongly linked prolactin (PRL) to both development of ERα+ breast cancer and resistance to endocrine therapies.

View Article and Find Full Text PDF

Clinically, circulating prolactin levels and density of the extracellular matrix (ECM) are individual risk factors for breast cancer. As tumors develop, the surrounding stroma responds with increased deposition and cross-linking of the collagen matrix (desmoplasia). In mouse models, prolactin promotes mammary carcinomas that resemble luminal breast cancers in women, and increased collagen density promotes tumor metastasis and progression.

View Article and Find Full Text PDF

Epidemiological and experimental studies have revealed an important role for prolactin (PRL) in breast cancer. Cyclin D1 is a major downstream target of PRL in lobuloalveolar development during pregnancy and is amplified and/or overexpressed in many breast carcinomas. To examine the importance of cyclin D1 in PRL-induced pathogenesis, we generated transgenic mice (NRL-PRL) that overexpress PRL in mammary epithelial cells, with wild-type, heterozygous, or genetically ablated cyclin D1 in the FVB/N genetic background.

View Article and Find Full Text PDF

Introduction: Tumors that express estrogen receptor alpha (ERα+) comprise 75% of breast cancers in women. While treatments directed against this receptor have successfully lowered mortality rates, many primary tumors initially or later exhibit resistance. The paucity of murine models of this "luminal" tumor subtype has hindered studies of factors that promote their pathogenesis and modulate responsiveness to estrogen-directed therapeutics.

View Article and Find Full Text PDF

This perspective on Boyd et al. (beginning on page 1398 in this issue of the journal) discusses recent published research examining the interplay between social stress and breast cancer. Cross-disciplinary studies using genetically defined mouse models and established neonatal and peripubertal paradigms of social stress are illuminating biological programming by diverse early-life experiences for the risk of breast cancer.

View Article and Find Full Text PDF

Chronic stress is associated with more rapid tumor progression, and recent evidence suggests that stress may contribute to social and ethnic disparities in the incidence and mortality of breast cancer. We evaluated the p53(+/-) FVB/N mouse as a model to investigate effects of chronic social stress on mammary gland development, gene expression, and tumorigenesis. We individually housed (IH) wild-type and p53(+/-) female FVB/N mice, starting at weaning.

View Article and Find Full Text PDF