Background & Aims: Previous studies have suggested that iron absorption in suckling mammals is refractory to stimuli that normally would decrease absorption in adults. To better understand the regulation of iron absorption during suckling, we have characterized the relationship between hepcidin, ferroportin, and iron absorption at this crucial stage of life.
Methods: To determine whether ferroportin is involved in iron absorption during suckling, absorption was measured in intestine-specific ferroportin knockout mice.
Iron is crucial for many biological functions, but quantitatively the most important use of iron is in the production of hemoglobin in red blood cell precursors. The amount of iron in the plasma, and hence its availability for hemoglobin synthesis, is determined by the liver-derived iron regulatory hormone hepcidin. When the iron supply to erythroid precursors is limited, as often occurs during stimulated erythropoiesis, these cells produce signals to inhibit hepatic hepcidin production, thereby increasing the amount of iron that enters the plasma.
View Article and Find Full Text PDFIn conditions such as β-thalassaemia, stimulated erythropoiesis can reduce the expression of the iron regulatory hormone hepcidin, increasing both macrophage iron release and intestinal iron absorption and leading to iron loading. However, in certain conditions, sustained elevation of erythropoiesis can occur without an increase in body iron load. To investigate this in more detail, we made use of a novel mouse strain (RBC14), which exhibits mild β-thalassaemia intermedia with minimal iron loading.
View Article and Find Full Text PDFObjectives: The mechanism of action of, and resistance to, metronidazole in the anaerobic (or micro-aerotolerant) protozoan parasite Giardia lamblia has long been associated with the reduction of ferredoxin (Fd) by the enzyme pyruvate:ferredoxin oxidoreductase (PFOR) and the subsequent activation of metronidazole by Fd to toxic radical species. Resistance to metronidazole has been associated with down-regulation of PFOR and Fd. The aim of this study was to determine whether the PFOR/Fd couple is the only pathway involved in metronidazole activation in Giardia.
View Article and Find Full Text PDFGiven the growing appreciation of serious health sequelae from widespread Trichomonas vaginalis infection, new tools are needed to study the parasite's genetic diversity. To this end we have identified and characterized a panel of 21 microsatellites and six single-copy genes from the T. vaginalis genome, using seven laboratory strains of diverse origin.
View Article and Find Full Text PDFThis study investigates the susceptibility of a clinically metronidazole (Mz)-resistant isolate of Trichomonas vaginalis to alternative anti-trichomonal compounds. The microaerobic minimal inhibitory concentration (MIC) of the 5-nitroimidazole (NI) drug, Mz, against a typical Mz-susceptible isolate of T. vaginalis is around 3.
View Article and Find Full Text PDFThe 5-nitroimidazole (NI) compound C17, with a side chain carrying a remote phenyl group in the 2-position of the imidazole ring, is at least 14-fold more active against the gut protozoan parasite Giardialamblia than the 5-NI drug metronidazole (MTR), with a side chain in the 1-position of the imidazole ring, which is the primary drug for the treatment of giardiasis. Over 10 months, lines resistant to C17 were induced in vitro and were at least 12-fold more resistant to C17 than the parent strains. However, these lines had ID(90) values (concentration of drug at which 10% of control parasite ATP levels are detected) for MTR of >200 microM, whilst lines induced to be highly resistant to MTR in vitro have maximum ID(90) values around 100 microM (MTR-susceptible isolates typically have an ID(90) of 5-12.
View Article and Find Full Text PDFBackground: The prevalence of the sexually transmissible protozoan parasite Trichomonas vaginalis in the highlands of Papua New Guinea (PNG) has been reported to be as high as 46% and although not previously studied in Papua New Guinea, clinical resistance against metronidazole (Mz), the drug most commonly used to treat trichomoniasis, is well documented worldwide. This study was primarily aimed at assessing resistance to Mz in T. vaginalis strains from the Goroka region.
View Article and Find Full Text PDFThe genome of the gut protozoan parasite Giardia duodenalis (assemblage A) has been sequenced and compiled as contigs and scaffolds (GiardiaDB- http://GiardiaDB.org ), but specific chromosome location of all scaffolds is unknown. To determine which scaffolds belong to the 3-Mb chromosome, a library of probes specific for this chromosome was constructed.
View Article and Find Full Text PDFAntiretroviral protease inhibitors were assessed in vitro for their activity against Giardia duodenalis and Trichomonas vaginalis. Kaletra (a co-formulation of ritonavir and lopinavir) was the most effective overall, with 50% effective drug concentrations (EC(50)) of 1.1-2.
View Article and Find Full Text PDFMetronidazole (Mz)-resistant Giardia and Trichomonas were inhibited by 1 of 30 new 5-nitroimidazole drugs. Another five drugs were effective against some but not all of the Mz-resistant parasites. This study provides the incentive for the continued design of 5-nitroimidazole drugs to bypass cross-resistance among established 5-nitromidazole antiparasitic drugs.
View Article and Find Full Text PDFThe flagellated protozoa Giardia duodenalis is the most commonly detected parasite in the intestinal tract of humans. Infections with the parasite result in diarrhoeal disease in humans and animals, with infants at risk from failure-to-thrive syndrome. The incidence of giardiasis worldwide may be as high as 1000 million cases.
View Article and Find Full Text PDFTrichomoniasis is the most common, sexually transmitted infection. It is caused by the flagellated protozoan parasite Trichomonas vaginalis. Symptoms include vaginitis and infections have been associated with preterm delivery, low birth weight and increased infant mortality, as well as predisposing to HIV/AIDS and cervical cancer.
View Article and Find Full Text PDFKeratinocytes expressing the human papillomavirus (HPV) type 16 E7 protein, as a transgene driven by the K14 promoter, form a murine model of HPV-mediated epithelial cancers in humans. Our previous studies have shown that K14E7 transgenic skin grafts onto syngeneic mice are not susceptible to immune destruction despite the demonstrated presence of a strong, systemic CTL response directed against the E7 protein. Consistent with this finding, we now show that cultured, E7 transgenic keratinocytes (KC) express comparable endogenous levels of E7 protein to a range of CTL-sensitive E7-expressing cell lines but are not susceptible to CTL-mediated lysis in vitro.
View Article and Find Full Text PDFPrimary vaccine strategies against group A streptococci (GAS) have focused on the M protein--the target of opsonic antibodies important for protective immunity. We have previously reported protection of mice against GAS infection following parenteral delivery of a multi-epitope vaccine construct, referred to as a heteropolymer. This current report has assessed mucosal (intranasal (i.
View Article and Find Full Text PDF