We reply to the response by P Calvo, V Raja, and M Segundo-Ortin to our article titled "Plant 'intelligence' and the misuse of historical sources as evidence." Their response draws on the authority of psychologist Edward C. Tolman in support of their suggestion that the study of plant intelligence requires an interdisciplinary approach, including cognitive science and other disciplines.
View Article and Find Full Text PDFProponents of the concepts of plant intelligence and plant neurobiology often use historical sources as "evidence" and argue that eminent past scientists have supported ideas of plant intelligence, memory, learning, decision-making, agency, and consciousness. Historical sources include writings by Charles Darwin, Julius von Sachs, F. W.
View Article and Find Full Text PDFThere are growing doubts about the true role of the common mycorrhizal networks (CMN or wood wide web) connecting the roots of trees in forests. We question the claims of a substantial carbon transfer from 'mother trees' to their offspring and nearby seedlings through the CMN. Recent reviews show that evidence for the 'mother tree concept' is inconclusive or absent.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2021
It has been proposed by some plant scientists that plants are cognitive and conscious organisms, although this is a minority view. Here we present a brief summary of some of the arguments against this view, followed by a critique of an article in this same issue of Biochemical and Biophysical Research Communications by Calvo, Baluska, and Trewavas (2020) that cites Integrated Information Theory (IIT) as providing additional support for plant consciousness. The authors base their argument on the assumptions that all cells are conscious and that consciousness is confined to life.
View Article and Find Full Text PDFClaims that plants have conscious experiences have increased in recent years and have received wide coverage, from the popular media to scientific journals. Such claims are misleading and have the potential to misdirect funding and governmental policy decisions. After defining basic, primary consciousness, we provide new arguments against 12 core claims made by the proponents of plant consciousness.
View Article and Find Full Text PDFIn claiming that plants have consciousness, 'plant neurobiologists' have consistently glossed over the remarkable degree of structural and functional complexity that the brain had to evolve for consciousness to emerge. Here, we outline a new hypothesis proposed by Feinberg and Mallat for the evolution of consciousness in animals. Based on a survey of the brain anatomy, functional complexity, and behaviors of a broad spectrum of animals, criteria were established for the emergence of consciousness.
View Article and Find Full Text PDFStomatal opening exhibits two main peaks of activity in the visible range-a red peak, mediated by photosynthesis, and a blue peak, mediated by one or more blue light (BL) photoreceptors. In addition, a pronounced peak in the UV-B region has been characterized, as has a smaller UV-A peak. The BL-induced stomatal opening can be reversed by green light (GL).
View Article and Find Full Text PDFThe vacuolar-type H(+)-ATPase acidifies intracellular compartments and is essential for many processes, including cotransport, guard cell movement, development, and tolerance to environmental stress. We have identified at least 26 genes encoding subunits of the vacuolar-type H(+)-ATPase in the Arabidopsis thaliana genome, although inconsistent nomenclature of these genes is confusing. The pump consists of subunits A through H of the peripheral V(1) complex, and subunits a, c, c" and d of the V(o) membrane sector.
View Article and Find Full Text PDFPolar transport of the plant hormone auxin is regulated at the cellular level by inhibition of efflux from a plasma membrane (PM) carrier. Binding of the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) to a regulatory site associated with the carrier has been characterized, but the NPA-binding protein(s) have not been identified. Experimental disparities between levels of high-affinity NPA binding and auxin transport inhibition can be explained by the presence of a low-affinity binding site and in vivo hydrolysis of NPA.
View Article and Find Full Text PDF