We identify several beneficial characteristics of polarization spectroscopy as an absolute atomic reference for frequency stabilization of lasers, and demonstrate sub-kilohertz laser spectral linewidth narrowing using polarization spectroscopy with high-bandwidth feedback. Polarization spectroscopy provides a highly dispersive velocity-selective absolute atomic reference based on frequency-dependent birefringence in an optically pumped atomic gas. The pumping process leads to dominance of the primary closed transition, suppressing closely-spaced subsidiary resonances which reduce the effective capture range for conventional atomic references.
View Article and Find Full Text PDFA new program, PHI, with the ability to calculate the magnetic properties of large spin systems and complex orbitally degenerate systems, such as clusters of d-block and f-block ions, is presented. The program can intuitively fit experimental data from multiple sources, such as magnetic and spectroscopic data, simultaneously. PHI is extensively parallelized and can operate under the symmetric multiprocessing, single process multiple data, or GPU paradigms using a threaded, MPI or GPU model, respectively.
View Article and Find Full Text PDFMode stability is an important performance characteristic of external cavity diode lasers (ECDLs). It has been well established that the continuous mode-hop-free tuning range of a grating-feedback ECDL can be optimized by rotating the grating about a specific pivot location. We show that similar results can be obtained for other more convenient pivot locations by choosing instead the cavity length and grating location.
View Article and Find Full Text PDFWe demonstrate the retrieval of column-density images of cold atoms, using a noninterferometric phase-recovery technique based on a single off-resonant and defocused intensity image. The quantitative column density is retrieved via Fourier inversion and remains robust with respect to detuning and defocus. The technique offers excellent prospects for simple, nondestructive imaging of atoms in magnetic and optical traps and condensates.
View Article and Find Full Text PDF