The mechanism of cisplatin resistance in ovarian cancer is not fully understood. In the present study, we showed a critical role for endoplasmic reticulum (ER) stress tolerance in mediating cisplatin resistance in human ovarian cancer cells. We found cisplatin to inhibit the proliferation of two ovarian cancer cell lines: cisplatin-sensitive SKOV3 cells and cisplatin‑resistant SKOV3/DDP cells.
View Article and Find Full Text PDFCisplatin is a commonly used chemotherapeutic agent; however, the development of acquired resistance limits its application. Here, we demonstrate that 2-deoxy-d-glucose (2-DG) enhanced the antitumor effects of cisplatin in SKOV3 cells, which include inhibition of proliferation and promotion of apoptosis. Additionally, either cisplatin or 2-DG alone could upregulate the endoplasmic reticulum (ER) stress-associated protein glucose-regulated protein-78 (GRP78).
View Article and Find Full Text PDFCisplatin is commonly used as a therapeutic agent, despite its known adverse side effects and the occurrence of drug resistance. The development of novel methods for combination therapy with cisplatin is required in order to circumvent these limitations of cisplatin alone. The proteasome inhibitor lactacystin (LAC) has been indicated to produce anti-tumor effects, and has previously been used as an antitumor agent in cancer treatment research; however, its effects in combination with cisplatin treatment are unknown.
View Article and Find Full Text PDF