Purpose: We constructed a multitask learning model (latent space linear regression and deep learning [LSLR-DL]) in which the 2 tasks of cross-sectional predictions (using OCT) of visual field (VF; central 10°) and longitudinal progression predictions of VF (30°) were performed jointly via sharing the deep learning (DL) component such that information from both tasks was used in an auxiliary manner (The Association for Computing Machinery's Special Interest Group on Knowledge Discovery and Data Mining [SIGKDD] 2021). The purpose of the current study was to investigate the prediction accuracy preparing an independent validation dataset.
Design: Cohort study.
Purpose: To investigate whether OCT measurements can improve visual field (VF) trend analyses in glaucoma patients using the deeply regularized latent-space linear regression (DLLR) model.
Design: Retrospective cohort study.
Participants: Training and testing datasets included 7984 VF results from 998 eyes of 592 patients and 1184 VF results from 148 eyes of 84 patients with open-angle glaucoma, respectively.