In modern terminology, "organoids" refer to cells that grow in a specific three-dimensional (3D) environment in vitro, sharing similar structures with their source organs or tissues. Observing the morphology or growth characteristics of organoids through a microscope is a commonly used method of organoid analysis. However, it is difficult, time-consuming, and inaccurate to screen and analyze organoids only manually, a problem which cannot be easily solved with traditional technology.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
April 2023
Organs-on-a-chip is a microfluidic microphysiological system that uses microfluidic technology to analyze the structure and function of living human cells at the tissue and organ levels in vitro. Organs-on-a-chip technology, as opposed to traditional two-dimensional cell culture and animal models, can more closely simulate pathologic and toxicologic interactions between different organs or tissues and reflect the collaborative response of multiple organs to drugs. Despite the fact that many organs-on-a-chip-related data have been published, none of the current databases have all of the following functions: searching, downloading, as well as analyzing data and results from the literature on organs-on-a-chip.
View Article and Find Full Text PDFBioengineering (Basel)
November 2022
Organ-on-a-chip (OOC) provides microphysiological conditions on a microfluidic chip, which makes up for the shortcomings of traditional in vitro cellular culture models and animal models. It has broad application prospects in drug development and screening, toxicological mechanism research, and precision medicine. A large amount of data could be generated through its applications, including image data, measurement data from sensors, ~omics data, etc.
View Article and Find Full Text PDF