Environ Sci Technol
April 2023
Three-dimensional porous materials have been demonstrated as the most successful bioelectrodes in bioelectrochemical systems due to their high specific surface area and abundant adhesion regions for electroactive bacteria. However, the pore clogging potentially limits the mass transfer process inside the electrode due to the unreasonable structure design and long-term operation. The investigation of mass transport behavior in the porous scaffolds is of great significance for designing the electrode structure and optimizing bioelectrochemical system performance.
View Article and Find Full Text PDFA 3-D macroporous anode was constructed using different numbers of graphite rod arrays in fixed-volume bio-electrochemical systems (BESs), and the current and biofilm distribution were investigated by dividing the 3-D anode into several subunits. In the fixed-volume chamber, current production was not significantly improved after the electrode number increased to 36. In the case of 100 electrodes, a significant uneven current distribution was found in the macroporous anode.
View Article and Find Full Text PDF