Advanced oxidation is a very efficient method in wastewater treatment, but it is a waste of resources to directly oxide the high concentration of valuable organics into carbon dioxide and water. In this paper, the combination of persulfate and wet air oxidation was developed to recover organics from high concentration of wastewater, along with high mineralization of the residual organics. Nitrogen and sulfur co-doped hollow spherical polymers with narrow size distribution was recovered from the simulated benzothialzole (BTH) wastewater in this facile way, along with chemical oxygen demand (COD) removal rate higher than 90%.
View Article and Find Full Text PDFPhotocatalytic ozonation is an attractive advanced oxidation process for wastewater treatment, but highly active catalysts with strong response to visible light are urgently needed to push forward its practical application. In this study, a hierarchical biomimetic monoclinic bismuth vanadate (BiVO) with leaves morphology was synthesized by a hydrothermal method, and employed as catalyst for oxalic acid and penicillin degradation in photocatalytic ozonation. The results show that the organics degradation was more efficient using leaves shaped BiVO as catalyst than the bulk shaped one in photocatalytic ozonation and the synergy index is ranged from 2.
View Article and Find Full Text PDFThe nitrogen heterocyclic compounds (NHCs) are very toxic and widely used in many industries, while the treatment of NHCs in wastewater has not attracted enough concern till now. Here we studied the complete degradation of a typical NHCs, benzopyrazole (BP), in wet oxidation. The effects of different operation parameters, such as stirring speed, temperature, reaction time and initial pH, on BP degradation and chemical oxygen demand (COD) removal were studied.
View Article and Find Full Text PDF