Publications by authors named "Linares N"

Ex-situ machine perfusion of the liver has surmounted traditional limitations associated with static cold storage in the context of organ preservation. This innovative technology has changed the landscape of liver transplantation by mitigating ischemia perfusion injury, offering a platform for continuous assessment of organ quality, and providing an avenue for optimizing the use of traditionally marginal allografts. This review summarizes the contemporary clinical applications of machine perfusion devices and discusses potential future strategies for real-time viability assessment, therapeutic interventions, and modulation of organ function after recovery.

View Article and Find Full Text PDF

This study describes how the optimization of CuO/CuO heterostructures can enhance their (photo)catalytic performance. More specifically, the evaluation of catalysts with different CuO/CuO molar ratios was used to optimize their performance for the hydrogenation of 4-nitrophenol under both blue-LED light and dark conditions. For the first time, we analyzed the effect of blue LED irradiation on this reaction and found that when blue LEDs are used as the light source, a CuO/CuO ratio of 0.

View Article and Find Full Text PDF

Zeolite interconversion is a widely used strategy due to its unique advantages in the synthesis of some zeolites. By using a long-chain quaternary amine as both a structure-directing agent and porogen, we have produced superior catalysts, which we named Hybrid Zeolites, as their structures are made of building units of different zeolite types. The properties of these materials can be conveniently tuned, and their catalytic performance can be optimized simply by stopping the interconversion at different times.

View Article and Find Full Text PDF

Polystyrene (PS) is one of the most popular plastics due to its versatility, which renders it useful for a large variety of applications, including laboratory equipment, insulation and food packaging. However, its recycling is still a challenge, as both mechanical and chemical (thermal) recycling strategies are often cost-prohibitive in comparison to current disposal methods. Therefore, catalytic depolymerization of PS represents the best alternative to overcome these economical drawbacks, since the presence of a catalyst can improve product selectivity for chemical recycling and upcycling of PS.

View Article and Find Full Text PDF

We report a method to prepare core-shell zeolite beta (*BEA) with an aluminous core and an epitaxial Si-rich shell. This method capitalizes on the inherent defects in *BEA crystals to simultaneously passivate acid sites on external surfaces and increase intracrystalline mesoporosity through facile post-hydrothermal synthesis modification in alkaline media. This process creates more hydrophobic materials by reducing silanol defects and enriching the shell in silica via a combination of dealumination and the relocation of silica from the core to the shell during intracrystalline mesopore formation.

View Article and Find Full Text PDF

Introduction: Our exploratory study aimed to determine whether obstructive sleep apnoea (OSA) could affect cognitive functioning in males with coronary artery disease (CAD), and whether such impact could be associated with changes in thyroid hormones and inflammatory marker regulation on cognitive functioning.

Method: We evaluated different endocrine and inflammatory biomarkers, including free triiodothyronine [fT3], free tetraiodothyronine [fT4], N-terminal pro-B-type natriuretic peptide [NT-pro-BNP], and high-sensitivity C-reactive protein [hs-CRP] serum levels in 328 males ( = 57 ± 10 years), undergoing cardiac rehabilitation after an acute coronary event. Participants underwent full-night polysomnography and were classified in mild/non-OSA ( = 253) and OSA ( = 75) according to an apnoea-hypopnoea index ≥ 15 event/h.

View Article and Find Full Text PDF

Chagas disease is produced by the parasite , which is the leading cause of death and morbidity in Latin America. We have shown that in patients with Chagas cardiomyopathy, there is a chronic elevation of diastolic Ca concentration ([Ca]), associated with deterioration to further address this issue, we explored the role Na/Ca exchanger (NCX). Experiments were carried out in noninfected C57BL/6 mice and infected with blood-derived trypomastigotes of the Y strain.

View Article and Find Full Text PDF

Porosity and surface area analysis play a prominent role in modern materials science. At the heart of this sits the Brunauer-Emmett-Teller (BET) theory, which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of micro- and mesoporous materials.

View Article and Find Full Text PDF

Interzeolite transformation has been used to produce a novel family of hierarchical catalysts featuring excellent textural properties, strong acidity, and superior catalytic performance for the Friedel-Crafts alkylation of indole with benzhydrol, the Claisen-Schmidt condensation of benzaldehyde and hydroxyacetophenone, and the cracking of polystyrene. Intermediate solids of the FAU interzeolite transformation into BEA display both increased accessibility─due to the development of mesoporosity─and strong acidity─caused by the presence of ultrasmall crystals or zeolitic fragments in their structure. The use of surfactants allows for the development of the hierarchical catalysts with very narrow pore size distribution.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied a protein called serpinA3c/k, which moves to a special part of kidney cells when there is a problem like chronic kidney disease.
  • They found that when kidney cells are stressed, serpinA3c/k is released, and it changes in size because of sugars added to it.
  • Tracking this protein in urine could help doctors figure out if a person has kidney injury, especially if they see higher levels when the kidneys are hurt.
View Article and Find Full Text PDF

Tailoring processes of nucleation and growth to achieve desired material properties is a pervasive challenge in synthetic crystallization. In systems where crystals form via nonclassical pathways, engineering materials often requires the controlled assembly and structural evolution of colloidal precursors. In this study, we examine zeolite SSZ-13 crystallization and show that several polyquaternary amines function as efficient accelerants of nucleation, and, in selected cases, tune crystal size by orders of magnitude.

View Article and Find Full Text PDF

Micelle formation inside faujasite (FAU) zeolite, a critical step in the introduction of mesoporosity in zeolites by surfactant templating, has been confirmed by both C NMR and Raman spectroscopy. Here we provide unambiguous evidence of the incorporation of surfactant molecules inside zeolites during the first step of the surfactant-templating process followed by their self-assembly into micelles after hydrothermal treatment. The homogeneous presence of these micelles throughout zeolite crystals has been directly observed by Raman microspectroscopy, confirming the uniform incorporation of mesoporosity in zeolites by surfactant templating.

View Article and Find Full Text PDF

The adoptive transfer of alloantigen-specific regulatory T cells (Tregs) has been proposed as a therapeutic alternative in kidney transplant recipients to the use of lifelong immunosuppressive drugs that cause serious side effects. However, the clinical application of Tregs has been limited due to their low frequency in peripheral blood and the scarce development of efficient protocols to ensure their purity, expansion, and stability. Here, we describe a new experimental protocol that allows the long-term expansion of highly purified allospecific natural Tregs (nTregs) from both healthy controls and chronic kidney disease (CKD) patients, which maintain their phenotype and suppressive function under inflammatory conditions.

View Article and Find Full Text PDF

Conventional methods to prepare hierarchical zeolites depend upon the use of organic structure-directing agents and often require multiple synthesis steps with limited product yield and Brønsted acid concentration. Here, it is shown that the use of MEL- or MFI-type zeolites as crystalline seeds induces the spontaneous formation of self-pillared pentasil zeolites, thus avoiding the use of any organic or branching template for the crystallization of these hierarchical structures. The mechanism of formation is evaluated by time-resolved electron microscopy to provide evidence for the heterogeneous nucleation and growth of sequentially branched nanosheets from amorphous precursors.

View Article and Find Full Text PDF

Color has demonstrated to have an influence on picture naming tasks. Objects with high color diagnosticity are recalled faster than objects with low value. That is why the Argentinean Psycholinguistic Picture Naming Test in color (PAPDIC in Spanish) was designed.

View Article and Find Full Text PDF

A hierarchical USY zeolite has been produced using the surfactant-templating method and used as a catalyst for the production of two important active pharmaceutical ingredients. The presence of intracrystalline mesoporosity in the zeolite results in a significant increase in both the activity (up to 30 fold increase in TOF) and reusability for Friedel-Crafts alkylation and aldol condensation steps.

View Article and Find Full Text PDF

Introduction And Objectives: Primary immunodeficiency diseases (PIDs) are disorders associated mainly with recurrent and severe infection and an increase in susceptibility to autoimmune conditions and cancer. In Venezuela, PIDs are underdiagnosed and there is usually a delay in their diagnosis. Hence there are no data concerning the frequency and type of PIDs that occur.

View Article and Find Full Text PDF

With the aim of understanding the thermochemistry of the introduction of mesoporosity in zeolites by using surfactants, high temperature oxide melt solution calorimetry was used to determine the change in the enthalpy of formation of USY zeolite before and after the introduction of mesoporosity. Our results confirm that this process only slightly destabilizes the zeolite by the additional surface area. However, this can be overcome by the stabilizing effect of the interactions between the surfactant and the zeolite framework.

View Article and Find Full Text PDF

The preparation of nanosized zeolites is critical for applications where mass-transport limitations within microporous networks hinder their performance. Often the ability to generate ultrasmall zeolite crystals is dependent upon the use of expensive organics with limited commercial relevance. Herein, we report the generation of zeolite L crystals with uniform sizes less than 30 nm using a facile, organic-free method.

View Article and Find Full Text PDF

Mesoporosity can be conveniently introduced into zeolites by treating them in basic surfactant solutions. The apparent activation energy involved in the formation of mesopores in USY by surfactant-templating was determined using a combination of in situ synchrotron X-ray diffraction and ex situ gas adsorption. Additionally, techniques such as pH measurement and thermogravimetry/differential thermal analysis were employed to determine OH evolution and cetyltrimethylammonium ion (CTA ) uptake during the development of mesoporosity, thereby providing information about the different steps involved.

View Article and Find Full Text PDF

A series of low-temperature, visible-light-activated black organotitanias were synthesised through a sol-gel strategy that allowed the in situ incorporation of p-phenylenediamine (PPD) into the framework of anatase nanoparticles. The effect of the synthetic conditions on the crystalline structure and photocatalytic activity of these materials was assessed by several characterisation techniques, which revealed a small crystalline domain size (4.6-5.

View Article and Find Full Text PDF

Increased HPA axis activation and CRH release characterize the brain's response to global cerebral ischemia. Recently, CRH via activation of CRH type 1 receptors (CRHR1) has been shown to regulate Brain Derived Neurotrophic Factor (BDNF) secretion and emotional behavior. The current study investigates the impact of CRHR1 blockade on BDNF/TrkB signaling expression in the mesolimbic circuitry, and social and depressive-like behavior following global ischemia.

View Article and Find Full Text PDF

Malignant hyperthermia (MH) is potentially fatal pharmacogenetic disorder of skeletal muscle caused by intracellular Ca(2+) dysregulation. NCX is a bidirectional transporter that effluxes (forward mode) or influxes (reverse mode) Ca(2+) depending on cellular activity. Resting intracellular calcium ([Ca(2+)]r) and sodium ([Na(+)]r) concentrations are elevated in MH susceptible (MHS) swine and murine muscles compared with their normal (MHN) counterparts, although the contribution of NCX is unclear.

View Article and Find Full Text PDF

Alternative energy technologies are greatly hindered by significant limitations in materials science. From low activity to poor stability, and from mineral scarcity to high cost, the current materials are not able to cope with the significant challenges of clean energy technologies. However, recent advances in the preparation of nanomaterials, porous solids, and nanostructured solids are providing hope in the race for a better, cleaner energy production.

View Article and Find Full Text PDF