Immune therapies have had limited efficacy in high-grade serous ovarian cancer (HGSC), as the cellular targets and mechanism(s) of action of these agents in HGSC are unknown. Here we performed immune functional and single-cell RNA sequencing transcriptional profiling on novel HGSC organoid/immune cell co-cultures treated with a unique bispecific anti-programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) antibody compared with monospecific anti-PD-1 or anti-PD-L1 controls. Comparing the functions of these agents across all immune cell types in real time identified key immune checkpoint blockade (ICB) targets that have eluded currently available monospecific therapies.
View Article and Find Full Text PDFHigh-grade serous ovarian cancer (HGSOC) remains the most lethal gynecologic cancer in the United States. Genomic analysis revealed roughly half of HGSOC display homologous repair deficiencies. An improved understanding of the genomic and somatic mutations that influence DNA repair led to the development of poly(ADP-ribose) polymerase inhibitors for the treatment of ovarian cancer.
View Article and Find Full Text PDFOvarian cancer cells evade the immune system as well as chemotherapeutic and/or biologic treatments through inherent or acquired mechanisms of survival and drug resistance. Depending on the cell type and the stimuli, this threshold can range from external forces such as blunt trauma to programmed processes such as apoptosis, autophagy, or necroptosis. This review focuses on apoptosis, which is one form of programmed cell death.
View Article and Find Full Text PDFOvarian cancer (OvCa) is the most lethal gynecological malignancy in the United States primarily due to lack of a reliable early diagnostic, high incidence of chemo-resistant recurrent disease as well as profuse tumor heterogeneity. Cancer stem cells (CSCs) continue to gain attention, as they are known to resist chemotherapy, self-renew and re-populate the bulk tumor with undifferentiated and differentiated cells. Moreover, CSCs appear to readily adapt to environmental, immunologic and pharmacologic cues.
View Article and Find Full Text PDFIncreased proteolytic activity is a key event that aids in breakdown of the follicular wall to permit oocyte release. How the protease activity is regulated is still unknown. We hypothesize that tissue factor pathway inhibitor 2 (TFPI2), a Kunitz-type serine protease inhibitor, plays a role in regulating periovulatory proteolytic activity as in other tissues.
View Article and Find Full Text PDFAn intrafollicular increase in proteolytic activity drives ovulatory events. Surprisingly, the periovulatory expression profile of the membrane-type matrix metalloproteinases (MT-MMPs), unique proteases anchored to the cell surface, has not been extensively examined. Expression profiles of the MT-MMPs were investigated in ovarian tissue from well-characterized rat and macaque periovulatory models and naturally cycling women across the periovulatory period.
View Article and Find Full Text PDFPostmenopausal women are at a higher risk of ovarian cancer due, in part, to increased levels of gonadotropins such as luteinizing hormone (LH). Gonadotropins and other stimuli are capable of activating two pathways, PKA and PKC, that are altered in ovarian cancer. To determine the role of LH on ovarian cancer, we explored the effects of human chorionic gonadotropin (hCG), an LH mimic, and an activator of the PKC pathway, phorbol-12-myristate 13-acetate (PMA), on ovarian cancer cell-cycle kinetics and apoptosis in Ovcar3 cells.
View Article and Find Full Text PDF