Publications by authors named "Lina Zou"

Background: Stress cardiomyopathy (SCM) currently has a high incidence in older adults, and the theories regarding its causes include "catecholamine myocardial toxicity" and "sympathetic hyperactivation". However, the role of the central nervous system in the pathogenesis of SCM remains unknown. We investigated the role of microglia activation in the paraventricular hypothalamic nucleus (PVN) in the development of SCM.

View Article and Find Full Text PDF

Natural enzymes are a class of biological catalysts that can catalyze a specific substrate. Although natural enzymes have catalytic activity, they are susceptible to the influence of external environment such as temperature, and storage requirements are more stringent. Since the first discovery of magnetic FeO nanoparticles with peroxidase-like activity in 2007, the research on nanoenzymes has entered a rapid development stage.

View Article and Find Full Text PDF

Fluorescent sensors reflect information such as the concentration or content of the analysis by interacting with a specific recognition group to change the signal of the fluorophore. It has attracted much attention because of its advantages of high sensitivity, fast detection speed and low cost, and it has become an effective alternative to traditional detection methods. Graphitic phase carbon nitride nanosheets (g-CNNs) are a class of carbon-based fluorescent nanomaterials derived from bulk graphite phase carbon nitride (g-CN), which have attracted much attention from scholars because of their advantages of low cost, simple fabrication, high quantum yield, strong stability and nontoxicity.

View Article and Find Full Text PDF

Some metal ions, with inner enzyme-like catalytic activity, could be doped into lanthanide coordination polymers (Ln CPs) through coordination, which has been proved as a facile strategy to prepare the luminescent nanozymes. In this study, Cu-doped Ln CPs with laccase-mimic activity and double luminescence were rationally designed and synthesized by self-assembly of guanine monophosphate (GMP), 2-aminoterephthalic acid (ATA), Cu and Tb in buffer solution at room temperature. The obtained probes Tb/Cu-GMP/ATA CPs not only emitted green fluorescence of Tb and blue fluorescence of ATA simultaneously under irradiation at the same wavelength, but also processed enhanced laccase-like activity for catalyzing the oxidation of phenolic substrates.

View Article and Find Full Text PDF

The WRKY transcription factors comprise one of the most extensive gene families and serve as pivotal regulators of plant responses to heavy metal stress. They contribute significantly to maintaining plant growth and development by enhancing plant tolerance. However, research on the role of WRKY genes in response to cadmium (Cd) stress in mustard is minimal.

View Article and Find Full Text PDF

In this study, a signal-on photoelectrochemical (PEC) aptasensor for the ultrasensitive determination of kanamycin (KANA) was constructed using WO/CdS heterojunction as photoactive material. Firstly, WO/CdS heterojunction with excellent photoelectric response was successfully prepared by simple co-precipitation method, resulting in a strong and stable initial photocurrent. In addition, amino modified aptamers were immobilized on the electrode surface by glutaraldehyde as biological recognition components.

View Article and Find Full Text PDF

Nuclear matrix protein 22 (NMP22) is one of the most important tumor markers of bladder cancer and is significantly elevated in the urine of bladder cancer patients. Therefore, in this work, a highly sensitive ratiometric electrochemical immunosensor was constructed to detect NMP22 based on ZIF-8@MWCNTs@Chit@Fc@AuNPs composites. ZIF-8 had a large surface area and good adsorption ability.

View Article and Find Full Text PDF

Background: As a broad-spectrum tetracycline antibiotic, Oxytetracycline (OTC) was widely used in a variety of applications. But, the overuse of OTC had led to the detection of it in food, water and soil, which could present significance risk to human health and cause damage to ecosystem. It was of great significance to develop sensitive detection methods for OTC.

View Article and Find Full Text PDF

Anaerobic methane oxidation (AOM) can drive soil arsenate reduction, a process known as methane-dependent arsenate reduction (M-AsR), which is a critical driver of arsenic (As) release in soil. Low molecular weight organic acids (LMWOAs), an important component of rice root exudates, have an unclear influence and mechanism on the M-AsR process. To narrow this knowledge gap, three typical LMWOAs-citric acid, oxalic acid, and acetic acid-were selected and added to As-contaminated paddy soils, followed by the injection of CH and incubation under anaerobic conditions.

View Article and Find Full Text PDF

Diabetic foot ulcers often become infected, leading to treatment complications and increased risk of loss of limb. Therapeutics to manage infection and simultaneously promote healing are needed. Here we report on the development of a Janus liposozyme that treats infections and promotes wound closure and re-epithelialization.

View Article and Find Full Text PDF

Tandem enzyme can catalyze some cascade reactions with high efficiency, and some few tandem enzyme-like mimics have been discovered recently. Further improving the catalytic efficiency of tandem nanoenzymes with facile method may undoubtedly promote and broaden their applications in various fields. In this work, cupric oxide nanoparticles (CuO NPs) with dual-functional enzyme mimics were synthesized using the rapid deposition method in advance, which simultaneously combined with lanthanide infinite coordination polymers (Ln ICPs) during the self-assemble of Tb, guanine-5'-triphosphate (GTP) and auxiliary ligand terephthalic acid (TA).

View Article and Find Full Text PDF

Enzymes catalyze almost all material conversion processes within living organisms, yet their natural evolution remains unobserved. Short peptides, derived from proteins and featuring active sites, have emerged as promising building blocks for constructing bioactive supramolecular materials that mimic native proteins through self-assembly. Herein, we employ histidine-containing isomeric tetrapeptides KHFF, HKFF, KFHF, HFKF, FKHF, and FHKF to craft supramolecular self-assemblies, aiming to explore the sequence-activity landscapes of enzyme evolution.

View Article and Find Full Text PDF

A twice-walk strategy based on a three-dimensional (3D) cleat-equipped DNA walking machine with a high signal amplification efficiency was investigated for ultrasensitive detection of miRNA. Impressively, addition of duplex-specific nuclease (DSN) just once drove the twice-walk strategy, making the strategy simpler. With the advantages of being simple, rapid and ultrasensitive, the biosensor offers potential for use in early clinical diagnosis.

View Article and Find Full Text PDF

Design and fabrication of integrated multifunctional probes with intrinsic catalytic and detection abilities is of great importance to simplify the operation in biosensing application with high sensitivity. Herein, dual-emitting lanthanide coordination polymers (Ln-CPs) were facilely prepared by self-assembly of guanine diphosphate (GDP), terephthalic acid (TA), Tb and Cu designated as Tb/Cu-GDP/TA CPs. The doped Cu endowed CPs with obviously enhanced peroxidase mimicking activity compared with free Cu.

View Article and Find Full Text PDF

Background: Sensitive and selective analysis of low content nucleic acid sequences plays an important role in pathogen analysis, disease diagnosis and biomedicine. The electrochemical biosensor based on toehold-mediated strand displacement reaction (TMSD) is highly attractive in nucleic acid detection due to their improved sensitivity and rapid response. But the traditional TMSD carried out on the electrode always with low displacement efficiency and complicated electrode operation, resulting in compromised sensing performance.

View Article and Find Full Text PDF

Hydroxypropyl methylcellulose (HPMC) was employed as an intermediate layer to enhance interfacial interaction between chitosan (CS) coating and tangerine fruits, thereby improving the preservation effect. Owing to the low surface tension of tangerine fruit (26.04 mN/m), CS coating solutions showed poor wetting properties on fruit peels (contact angle > 100°).

View Article and Find Full Text PDF
Article Synopsis
  • Early detection and treatment of bladder cancer are very important for preventing and treating the disease.
  • The study looked at a substance called survivin, which might help doctors diagnose bladder cancer more accurately.
  • The results showed that survivin is quite good at signaling bladder cancer, but more high-quality research is needed to be sure about its effectiveness.
View Article and Find Full Text PDF

Various nucleic acid molecular machines have emerged in recent years. However, when the nucleic acid tracks are fully depleted, these walkers are highly susceptible to premature release or stalling in regions where the tracks are locally exhausted. In this work, a molecular walking machine with a cleat domain preventing dissociation from the track was explored for ultrasensitive detection of miRNA.

View Article and Find Full Text PDF

Introduction: Takotsubo cardiomyopathy (TTC), also known as stress-induced cardiomyopathy, resembles acute heart failure syndrome but lacks disease-specific diagnosis and treatment strategies. TTC accounts for approximately 5-6% of all suspected cases of acute coronary syndrome in women. At present, animal models of TTC are often created by large amounts of exogenous catecholamines such as isoproterenol.

View Article and Find Full Text PDF

Root exudate is a major source of soil organic matter and can significantly affect arsenic (As) migration and transformation in paddy soils. Citric acid is the main component of rice root exudate, however, the impacts and rules of citric acid on As bioavailability and rhizobacteria in different soils remains unclear. This study investigated the effects of citric acid on As transformation and microbial community in ten different paddy soils by flooded soil culture experiments.

View Article and Find Full Text PDF

Brassinazole-resistant (BZR) transcription factor plays an important role in plant growth and stress resistance through brassinosteroid (BR) signal transduction. However, systematic analysis of the BZR family in dicots remains limited. In this study, we conducted a genome-wide study of four typical dicots: Arabidopsis thaliana, Carica papaya, Vitis vinifera and Populus trichocarpa.

View Article and Find Full Text PDF

A sensitive signal-on photoelectrochemical aptasensor for antibiotic determination was constructed based on the energy level matching between ferrocene and CuInS. P-type CuInS microflower was complexed with reduced graphene oxide (CuInS/rGO) to get photocathode current with good photoelectric conversion efficiency and stability. Then, hairpin DNA (HP) was covalently bonded to the electrode surface.

View Article and Find Full Text PDF
Article Synopsis
  • Kenaf is effective for cleaning up cadmium (Cd) from contaminated farmland due to its high biomass and resilience to Cd stress.
  • A hydroponic study was performed, testing different nitrogen (N) forms (NH-N, NO-N, urea-N) and concentrations to see their effects on kenaf growth and Cd absorption under Cd stress.
  • Results indicated that nitrogen type significantly influenced plant growth and Cd uptake, with 2 mM of NO-N being the most effective for increasing biomass and Cd accumulation, while NH-N reduced Cd levels but improved the movement of Cd within the plant.
View Article and Find Full Text PDF

Dietary restriction is an effective anti-ageing intervention across species. However, the molecular mechanisms from the metabolic aspects of view are still underexplored. Here we show ACS-20 as a key mediator of dietary restriction on healthy ageing from a genetic screen of the C.

View Article and Find Full Text PDF

In the natural environment, complex and changeable meteorological factors can influence changes in the internal physiology and phenotype of crops. It is important to learn how to convert complex meteorological factor stimuli into plant perception phenotypes when analyzing the biological data obtained under the natural field condition. We restored the true gradation distribution of leaf color, which is also known as the skewed distribution of color scale, and obtained 20 multi-dimensional color gradation skewness-distribution (CGSD) parameters based on the leaf color skewness parameter system.

View Article and Find Full Text PDF