Background: Women with germline BRCA1 or BRCA2 (BRCA1/BRCA2) mutations are at very high risk of developing breast cancer, including asynchronous contralateral breast cancer (CBC). BRCA1/BRCA2 genes help maintain genome stability and assist in DNA repair. We examined whether the risk of CBC associated with radiation treatment was higher among women with germline BRCA1/BRCA2 mutations than among non-carriers.
View Article and Find Full Text PDFPurpose: Women with breast cancer diagnosed early in life comprise a substantial portion of those tested for BRCA1/BRCA2 mutations; however, little information is available on the subsequent risks of contralateral breast cancer in mutation carriers. This study assessed the risk of subsequent contralateral breast cancer associated with carrying a BRCA1 or BRCA2 mutation.
Patients And Methods: In this nested case-control study, patients with contralateral breast cancer diagnosed 1 year or more after a first primary breast cancer (n = 705) and controls with unilateral breast cancer (n = 1,398) were ascertained from an underlying population-based cohort of 52,536 women diagnosed with a first invasive breast cancer before age 55 years.
BRCA1 and BRCA2 screening in women at high-risk of breast cancer results in the identification of both unambiguously defined deleterious mutations and sequence variants of unknown clinical significance (VUS). We examined a population-based sample of young women with contralateral breast cancer (CBC, n=705) or unilateral breast cancer (UBC, n=1398). We identified 470 unique sequence variants, of which 113 were deleterious mutations.
View Article and Find Full Text PDFDisease-predisposing germline mutations in cancer susceptibility genes may consist of large genomic rearrangements that are challenging to detect and characterize using standard PCR-based mutation screening methods. Here, we describe a custom-made zoom-in microarray comparative genomic hybridization (CGH) platform of 60mer oligonucleotides. The 4 x 44 K array format provides high-resolution coverage (200-300 bp) of 400-700 kb genomic regions surrounding six cancer susceptibility genes.
View Article and Find Full Text PDF