Publications by authors named "Lina Suo"

Background: Eukaryotic elongation factor 1 alpha 2 (eEF1A2) is a protein coding gene which is involved in tumor development and progression in several types of human cancer, but little is known about the function of eEF1A2 proteins in gastric cancer (GC). This study aimed to investigate the effects of , and on the migration of GC cells.

Methods: The Oncomine and The Cancer Genome Atlas (TCGA) databases were used to evaluate the expression of , , and in GC and the association of eEF1A2 family with individual clinical characteristics.

View Article and Find Full Text PDF

Inflammation has a destructive effect on the homeostasis of the vascular wall, which is involved in the formation, growth, and rupture of human intracranial aneurysms (IAs) disease progression. However, inflammation-related markers have not been well studied in the risk stratification of unruptured IAs. The purpose of this study was to investigate the predictive value of serum inflammatory markers in the unstable progression of small saccular intracranial aneurysms (SIAs).

View Article and Find Full Text PDF

In the present study, we examined the role of MDM2 in the angiogenesis process and its potential association with the sprouting of endothelial tip cells. To address this, we performed hypoxia-treated gastric cancer cells (HGC-27) to quantitative RT-PCR and Western blot analysis to measure the levels of MDM2 and VEGF-A mRNA and protein expression. Subsequently, we employed siRNA to disrupt MDM2 expression, followed by hypoxia treatment.

View Article and Find Full Text PDF

Bending sensing was realized by constructing a tapered four-core optical fiber (TFCF) sensor. The four-core fiber (FCF) between the fan-in and fan-out couplers was tapered and the diameter became smaller, so that the distance between the four cores arranged in a square became gradually smaller to produce supermodes. The two ends of the TFCF were respectively connected to the fan-in and fan-out couplers so that the individual cores in the FCF could link to the separate single-mode fibers.

View Article and Find Full Text PDF

A weakly-coupled multicore fiber can generate supermodes when the multi-cores are closer to enter the evanescent power coupling region. The high sensitivity strain sensors using tapered four-core fibers (FCFs) were demonstrated. The fan-in and fan-out couplers were used to carry out light coupling between singlemode fibers and the individual core of the FCFs.

View Article and Find Full Text PDF