Publications by authors named "Lina Sui"

The electrochemical conversion of nitrate to ammonia is necessary to restore the globally perturbed nitrogen cycle. Herein, the regulated coordination of active Cu single atoms to selectively modulate the energy barriers of proton-electron transfer steps was investigated and offered valuable insights for improving the selectivity and kinetics of the NORR.

View Article and Find Full Text PDF

Absence in melanoma 2 (AIM2) protein functions as a double-stranded DNA sensor and is critical for host defense against intracellular bacterial and viral pathogens. Recent research has highlighted the significance of AIM2 in the pathogenesis of diverse malignancies. Through its recognition of foreign or intracellular dsDNA, AIM2 triggers inflammasome activation, resulting in the release of pro-inflammatory cytokines such as IL-1β, IL-18, and induction of pyroptosis.

View Article and Find Full Text PDF

Absent in melanoma 2 (AIM2) serves as an intracellular nucleic acid sensor that predominantly detects double-stranded DNA (dsDNA) within the cells. This detection initiates the assembly of inflammasome and activates the inflammasome signaling cascade, resulting in the production of inflammatory mediators and the cleavage of Gasdermins. Consequently, these processes culminate in inflammatory responses and pyroptotic cell death.

View Article and Find Full Text PDF

Background: The incidence of inflammatory bowel disease (IBD) is on the rise in developing countries, and investigating the underlying mechanisms of IBD is essential for the development of targeted therapeutic interventions. Interferon regulatory factor 7 (IRF7) is known to exert pro-inflammatory effects in various autoimmune diseases, yet its precise role in the development of colitis remains unclear.

Methods: We analyzed the clinical significance of IRF7 in ulcerative colitis (UC) by searching RNA-Seq databases and collecting tissue samples from clinical UC patients.

View Article and Find Full Text PDF

The integration of solar steam generation and the hydrovoltaic effect is a promising strategy for simultaneously solving water scarcity and energy crises. However, it is still a challenge to attain a high water evaporation rate and a strong output of electricity in a single device. Here, we report a three-dimensional (3D) hierarchical CuO@Cu foam for solar-driven harvesting of freshwater and electricity efficiently.

View Article and Find Full Text PDF

Introduction: Intestinal immune dysregulation is strongly linked to the occurrence and formation of tumors. RING finger protein 128 (RNF128) has been identified to play distinct immunoregulatory functions in innate and adaptive systems. However, the physiological roles of RNF128 in intestinal inflammatory conditions such as colitis and colorectal cancer (CRC) remain controversial.

View Article and Find Full Text PDF

Candida albicans is among the most prevalent invasive fungal pathogens for immunocompromised individuals and novel therapeutic approaches that involve immune response modulation are imperative. Absent in melanoma 2 (AIM2), a pattern recognition receptor for DNA sensing, is well recognized for its involvement in inflammasome formation and its crucial role in safeguarding the host against various pathogenic infections. However, the role of AIM2 in host defense against C.

View Article and Find Full Text PDF

IFN regulatory factor 7 (IRF7) exerts anti-infective effects by promoting the production of IFNs in various bacterial and viral infections, but its role in highly morbid and fatal Candida albicans infections is unknown. We unexpectedly found that Irf7 gene expression levels were significantly upregulated in tissues or cells after C. albicans infection in humans and mice and that IRF7 actually exacerbates C.

View Article and Find Full Text PDF

Objective: Heterozygous coding sequence mutations of the INS gene are a cause of permanent neonatal diabetes (PNDM), requiring insulin therapy similar to T1D. While the negative effects on insulin processing and secretion are known, how dominant insulin mutations result in a continued decline of beta cell function after birth is not well understood.

Methods: We explored the causes of beta cell failure in two PNDM patients with two distinct INS mutations using patient-derived iPSCs and mutated hESCs.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a prevalent cause of cancer and mortality on a global scale. SNAI1, a member of the zinc finger transcription superfamily, is a significant contributor to embryonic development and carcinogenesis through the process of epithelial-mesenchymal transition (EMT). While prior research utilizing CRC cells and clinical data has demonstrated that SNAI1 facilitates CRC progression through diverse mechanisms, the precise manner in which epithelial SNAI1 regulates CRC development in vivo remains unclear.

View Article and Find Full Text PDF

Heterozygous coding sequence mutations of the gene are a cause of permanent neonatal diabetes (PNDM) that results from beta cell failure. We explored the causes of beta cell failure in two PNDM patients with two distinct mutations. Using b and mutated hESCs, we detected accumulation of misfolded proinsulin and impaired proinsulin processing , and a dominant-negative effect of these mutations on the in vivo performance of patient-derived SC-beta cells after transplantation into NSG mice.

View Article and Find Full Text PDF

Candida albicans is a common opportunistic pathogenic fungus. The innate immune system provides the first-line host defense against fungal infection. Innate immune receptors and downstream molecules have been shown to play various roles during fungal infection.

View Article and Find Full Text PDF

Constructing semiconductor heterojunctions can enable novel schemes for highly efficient photocatalytic activity. However, introducing strong covalent bonding at the interface remains an open challenge. Herein, ZnInS (ZIS) with abundant sulfur vacancies (Sv) is synthesized with the presence of PdSe as an additional precursor.

View Article and Find Full Text PDF

Mn doped lead-free double perovskites are emerging afterglow materials that can avoid the usage of rare earth ions. However, the regulation of the afterglow time is still a challenge. In this work, the Mn doped CsNaAgInCl crystals with afterglow emission at about 600 nm are synthesized by a solvothermal method.

View Article and Find Full Text PDF

The rare mutation encoding a truncating p.Arg138* variant (R138X) in zinc transporter 8 (ZnT8) is associated with a 65% reduced risk for type 2 diabetes. To determine whether ZnT8 is required for beta cell development and function, we derived human pluripotent stem cells carrying the R138X mutation and differentiated them into insulin-producing cells.

View Article and Find Full Text PDF

Sulfonylureas (SUs) are effective and affordable antidiabetic drugs. However, chronic use leads to secondary failure, limiting their utilization. Here, we identify cytochrome b5 reductase 3 (Cyb5r3) down-regulation as a mechanism of secondary SU failure and successfully reverse it.

View Article and Find Full Text PDF

The introduction of impure atoms or crystal defects is a promising strategy for enhancing the photocatalytic activity of semiconductors. However, the synergy of these two effects in 2D atomic layers remains unexplored. In this case, the preparation of molybdenum-doped thin ZnInS-containing S vacancies (Mo-doped Sv-ZnInS) is conducted using a one-pot solvothermal method.

View Article and Find Full Text PDF
Article Synopsis
  • Fusarium crown rot and wheat sharp eyespot are significant soil-borne diseases affecting wheat production in China, leading to substantial yield losses.
  • High-throughput sequencing and qPCR were used to analyze the impact of treating winter wheat seeds with either Trichoderma atroviride HB20111 or a chemical fungicide (tebuconazole) on the fungal community in the soil, showing that both treatments effectively reduced the harmful pathogen Fusarium pseudograminearum.
  • The application of T. atroviride HB20111 not only decreased disease incidence by 60.1%, surpassing the chemical treatment, but also resulted in a 7.7% increase in wheat yield, indicating its potential as a viable alternative to chemical fungicides for
View Article and Find Full Text PDF

Most clinically evaluated chimeric antigen receptor (CAR)-based cell therapies are generated from autologous immune cells. However, there are several limitations to autologous cell therapy, including low availability, poor quality of starting cellular material and limited expansion capability. Recently, induced pluripotent stem cell (iPSC)-derived allogeneic cell therapy platforms have gained popularity, as they seek to overcome many of the challenges inherent to current autologous cell therapies.

View Article and Find Full Text PDF

Solar desalination is considered as a promising approach to solve the shortage of fresh water resources. In this work, inspired by the transpiration of trees, a self-floating and integrated bionic mushroom solar steam generator (BMSSG) is proposed for highly efficient water evaporation. A wooden strip is used to mimic the stipe of the mushroom for water transportation, meanwhile polyvinyl alcohol (PVA) modified graphene aerogels (GA) is used to imitate the pileus of the mushroom for photothermal conversion.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is a disease that arises due to complex immunogenetic mechanisms. Key cell-cell interactions involved in the pathogenesis of T1D are activation of autoreactive T cells by dendritic cells (DC), migration of T cells across endothelial cells (EC) lining capillary walls into the islets of Langerhans, interaction of T cells with macrophages in the islets, and killing of β-cells by autoreactive CD8 T cells. Overall, pathogenic cell-cell interactions are likely regulated by the individual's collection of genetic T1D-risk variants.

View Article and Find Full Text PDF

The emergence of two dimensional (2D) nanosheets provides flexible platforms for the construction of semiconductor heterostructures for photocatalytic hydrogen evolution. However, the compact and conformal contact between the components with different dimensions remains challenge. Herein, we anchor the 2D layered black phosphorous quantum dots (BPQDs) onto the 2D ZnInS nanosheets with sulfur vacancies (V-ZIS).

View Article and Find Full Text PDF

Globally, nearly 40 percent of all diabetic patients develop serious diabetic kidney disease (DKD). The identification of the potential early-stage biomarkers and elucidation of their underlying molecular mechanisms in DKD are required. In this study, we performed integrated bioinformatics analysis on the expression profiles GSE111154, GSE30528 and GSE30529 associated with early diabetic nephropathy (EDN), glomerular DKD (GDKD) and tubular DKD (TDKD), respectively.

View Article and Find Full Text PDF

Bardet-Biedl syndrome (BBS) is a rare autosomal recessive disorder caused by mutations in genes encoding components of the primary cilium and is characterized by hyperphagic obesity. To investigate the molecular basis of obesity in human BBS, we developed a cellular model of BBS using induced pluripotent stem cell-derived (iPSC-derived) hypothalamic arcuate-like neurons. BBS mutations BBS1M390R and BBS10C91fsX95 did not affect neuronal differentiation efficiency but caused morphological defects, including impaired neurite outgrowth and longer primary cilia.

View Article and Find Full Text PDF