Publications by authors named "Lina M Epstein"

The mechanism of the consecutive halogenation of the tetrahydroborate anion [BH] by hydrogen halides (HX, X = F, Cl, Br) and hexahydro--hexaborate dianion [BH] by HCl via electrophile-induced nucleophilic substitution (EINS) was established by ab initio DFT calculations [M06/6-311++G(d,p) and wB97XD/6-311++G(d,p)] in acetonitrile (MeCN), taking into account non-specific solvent effects (SMD model). Successive substitution of H by X resulted in increased electron deficiency of borohydrides and changes in the character of boron atoms from nucleophilic to highly electrophilic. This, in turn, increased the tendency of the B-H bond to transfer a proton rather than a hydride ion.

View Article and Find Full Text PDF

The reaction between basic [(PCP)Pd(H)] (PCP = 2,6-(CHP(-CH))CH) and acidic [LWH(CO)] (L = Cp (), Tp (); Cp = η-cyclopentadienyl, Tp = κ-hydridotris(pyrazolyl)borate) leads to the formation of bimolecular complexes [LW(CO)(μ-CO)⋯Pd(PCP)] (, ), which catalyze amine-borane (MeNHBH, BuNHBH) dehydrogenation. The combination of variable-temperature (H, P{H}, B NMR and IR) spectroscopies and computational (ωB97XD/def2-TZVP) studies reveal the formation of an η-borane complex [(PCP)Pd(MeNHBH)][LW(CO)] () in the first step, where a BH bond strongly binds palladium and an amine group is hydrogen-bonded to tungsten. The subsequent intracomplex proton transfer is the rate-determining step, followed by an almost barrierless hydride transfer.

View Article and Find Full Text PDF

Two stereoisomers of pentacoordinate iridium(III) hydridochloride with triptycene-based PC(sp)P pincer ligand (1,8-bis(diisopropylphosphino)triptycene), and , differ by the orientation of hydride ligand relative to the bridgehead ring of triptycene. According to DFT/B3PW91/def2-TZVP calculations performed, an equatorial Cl ligand can relatively easily change its position in , whereas that is not the case in . Both complexes and readily bind the sixth ligand to protect the empty coordination site.

View Article and Find Full Text PDF

The activation of silanes in dehydrogenative coupling with alcohols under general base catalysis was studied experimentally (using multinuclear NMR, IR, and UV-visible spectroscopies) and computationally (at DFT M06/6-311++G(d,p) theory level) on the example of PhSiH ( = 1-3) interaction with (CF)CHOH in the presence of EtN. The effect of the phenyl groups' number and H substitution by the electron-withdrawing (CF)CHO group on Si-H bond hydricity (quantified as hydride-donating ability, HDA) and Lewis acidity of silicon atom (characterized by maxima of molecular electrostatic potential) was accessed. Our results show the coordination of Lewis base (Y = MeN, ROH, OR) leads to the increased hydricity of pentacoordinate hypervalent PhSi(Y)H complexes and a decrease of the reaction barrier for H release.

View Article and Find Full Text PDF

Thermodynamic hydricity (HDA) determined as Gibbs free energy (ΔG°[H]) of the H detachment reaction in acetonitrile (MeCN) was assessed for 144 small borane clusters (up to 5 boron atoms), polyhedral -boranes dianions [BH], and their lithium salts Li[BH] (n = 5-17) by DFT method [M06/6-311++G(d,p)] taking into account non-specific solvent effect (SMD model). Thermodynamic hydricity values of diborane BH (HDA = 82.1 kcal/mol) and its dianion [BH] (HDA = 40.

View Article and Find Full Text PDF

Two novel ruthenocene-based pincer palladium tetrahydroborates were characterized by XRD, NMR and FTIR. The alcoholysis of Pd(ii) tetrahydroborate LPd(BH) (L = κ-[{2,5-(BuPCH)CH}Ru(CH)]) yields the dinuclear cationic Pd(ii) tetrahydroborate with the bridging BH ligand [(LPd)(μ,η:η-BH)]. The bifurcate dihydrogen-bonded complexes are the active intermediates of the first proton transfer in the step-wise alcoholysis of LPd(BH), yielding eventually [(LPd)(μ,η:η-BH)].

View Article and Find Full Text PDF

The interaction of a set of mono-, di- and trisubstituted silanes with OH proton donors of different strength was studied by variable temperature (VT) FTIR and NMR spectroscopies at 190-298 K. Two competing sites of proton donors coordination: SiH and π-density of phenyl rings-are revealed for phenyl-containing silanes. The hydrogen bonds SiH⋅⋅⋅HO and OH⋅⋅⋅π(Ph) are of similar strength, but can be distinguished in the ν range: the ν vibrations appear at lower frequencies while OH⋅⋅⋅π(Ph) complexes give Si-H vibrations shifted to higher frequency.

View Article and Find Full Text PDF

The interaction of trans-W(N)(dppe) (1; dppe = 1,2-bis(diphenylphosphino)ethane) with relatively weak acids (p-nitrophenol, fluorinated alcohols, CFCOOH) was studied by means of variable temperature IR and NMR spectroscopy and complemented by DFT/B3PW91-D3 calculations. The results show, for the first time, the formation of a hydrogen bond to the coordinated dinitrogen, W-N≡N···H-O, that is preferred over H-bonding to the metal atom, W···H-O, despite the higher proton affinity of the latter. Protonation of the core metal-the undesirable side step in the conversion of N to NH-can be avoided by using weaker and, more importantly, bulkier acids.

View Article and Find Full Text PDF

The nondestructive reversible complexation of the macrocyclic group 11 metal pyrazolates {[3,5-(CF3)2Pz]M}3 (M = Cu(I), Ag(I)) to the halogen atom X = Cl, Br of η(3)-allyliron tricarbonyl halides (η(3)-2-R-C3H4)Fe(CO)3X is revealed by the variable-temperature spectroscopic (IR, NMR) study combined with density functional theory calculations. The composition of all complexes at room temperature is determined as 1:1. In the case of the [AgL]3 macrocycle, complexes 1:2 are observed at low temperature (<260 K).

View Article and Find Full Text PDF

The dihydrogen bond-an interaction between a transition-metal or main-group hydride (M-H) and a protic hydrogen moiety (H-X)-is arguably the most intriguing type of hydrogen bond. It was discovered in the mid-1990s and has been intensively explored since then. Herein, we collate up-to-date experimental and computational studies of the structural, energetic, and spectroscopic parameters and natures of dihydrogen-bonded complexes of the form M-H···H-X, as such species are now known for a wide variety of hydrido compounds.

View Article and Find Full Text PDF

According to spectroscopic (NMR, IR, UV/Vis) study, the interaction of pentaphosphaferrocene [Cp*Fe(η(5) -P5 )] with trimeric copper pyrazolate [(Cu{3,5-(CF3 )2 Pz})3 ] yields a new compound that is astonishingly stable in solution. Single-crystal X-ray analysis reveals unprecedented structural changes in the interacting molecules and the unique type of coordination [Cp*Fe(μ3 -η(5) :η(2) ,η(2) -P5 ){Cu(3,5-(CF3 )2 Pz)}3 ]. As a result of the 90° macrocycle folding, the copper atoms are able to behave both as a Lewis acid and as a Lewis base in the interaction with the cyclo-P5 ligand.

View Article and Find Full Text PDF

Dimethylamine-borane (DMAB) acid/base properties, its dihydrogen-bonded (DHB) complexes and proton transfer reaction in nonaqueous media were investigated both experimentally (IR, UV/vis, NMR, and X-ray) and theoretically (DFT, NBO, QTAIM, and NCI). The effects of DMAB concentration, solvents polarity and temperature on the degree of DMAB self-association are shown and the enthalpy of association is determined experimentally for the first time (-ΔH°assoc = 1.5-2.

View Article and Find Full Text PDF

Combining variable-temperature infrared and NMR spectroscopic studies with quantum-chemical calculations (density functional theory (DFT) and natural bond orbital) allowed us to address the problem of competition between MH (M = transition metal) and BH hydrogens as proton-accepting sites in dihydrogen bond (DHB) and to unravel the mechanism of proton transfer to complex (PP3)RuH(η(1)-BH4) (1, PP3 = κ(4)-P(CH2CH2PPh2)3). Interaction of complex 1 with CH3OH, fluorinated alcohols of variable acid strength [CH2FCH2OH, CF3CH2OH, (CF3)2CHOH (HFIP), (CF3)3COH], and CF3COOH leads to the medium-strength DHB complexes involving BH bonds (3-5 kcal/mol), whereas DHB complexes with RuH were not observed experimentally. The two proton-transfer pathways were considered in DFT/M06 calculations.

View Article and Find Full Text PDF

The combination of variable temperature (190-297 K) IR and NMR spectroscopy studies with quantum-chemical calculations at the DFT/B3PW91 and AIM level had the aim to determine the mechanism of proton transfer to CpRuH(dppe) (1, dppe = Ph(2)P(CH(2))(2)PPh(2)) and the structures of intermediates. Dihydrogen bond (DHB) formation was established in the case of interaction with weak proton donors like CF(3)CH(2)OH. Low-temperature protonation (at about 200 K) by stronger proton donors leads via DHB complex to the cationic nonclassical complex [CpRu(η(2)-H(2))(dppe)](+) (2).

View Article and Find Full Text PDF

A theoretical study on two series of electron-rich group 8 hydrides is carried out to evaluate involvement of the transition metal in dihydrogen bonding. To this end, the structural and electronic parameters are computed at the DFT/B3PW91 level for hydrogen-bonded adducts of [(PP(3))MH(2)] and [Cp*MH(dppe)] (M = Fe, Ru, Os; PP(3) = κ(4)-P(CH(2)CH(2)PPh(2))(3), dppe = κ(2)-Ph(2)PCH(2)CH(2)PPh(2)) with CF(3)CH(2)OH (TFE) as proton donor. The results are compared with those of adduct [Cp(2)NbH(3)]⋅TFE featuring a "pure" dihydrogen bond, and classical hydrogen bonds in pyridine⋅TFE and Me(3)N⋅TFE.

View Article and Find Full Text PDF

The mechanism of transition-metal tetrahydroborate dimerization was established for the first time on the example of (Ph(3)P)(2)Cu(η(2)-BH(4)) interaction with different proton donors [MeOH, CH(2)FCH(2)OH, CF(3)CH(2)OH, (CF(3))(2)CHOH, (CF(3))(3)CHOH, p-NO(2)C(6)H(4)OH, p-NO(2)C(6)H(4)N═NC(6)H(4)OH, p-NO(2)C(6)H(4)NH(2)] using the combination of experimental (IR, 190-300 K) and quantum-chemical (DFT/M06) methods. The formation of dihydrogen-bonded complexes as the first reaction step was established experimentally. Their structural, electronic, energetic, and spectroscopic features were thoroughly analyzed by means of quantum-chemical calculations.

View Article and Find Full Text PDF

Interaction of the copper, {[3,5-(CF(3))(2)Pz]Cu}(3), and silver, {[3,5-(CF(3))(2)Pz]Ag}(3), macrocycles [3,5-(CF(3))(2)Pz = 3,5-bis(trifluoromethyl)pyrazolate] with cyclooctatetraeneiron tricarbonyl, (cot)Fe(CO)(3), was investigated by IR and NMR spectroscopy for the first time. The formation of 1:1 complexes was observed at low temperatures in hexane. The composition of the complexes (1:1) and their thermodynamic characteristics in hexane and dichloromethane were determined.

View Article and Find Full Text PDF

Structural, spectroscopic, and electronic features of weak hydrogen-bonded complexes of CpM(CO)(3)H (M = Mo (1a), W (1b)) hydrides with organic bases (phosphine oxides R(3)PO (R = n-C(8)H(17), NMe(2)), amines NMe(3), NEt(3), and pyridine) are determined experimentally (variable temperature IR) and computationally (DFT/M05). The intermediacy of these complexes in reversible proton transfer is shown, and the thermodynamic parameters (DeltaH degrees , DeltaS degrees ) of each reaction step are determined in hexane. Assignment of the product ion pair structure is made with the help of the frequency calculations.

View Article and Find Full Text PDF

The novel iridium(III) hydride [(kappa(3)-P,P,P-NP(3))IrH(3)] [NP(3) = N(CH(2)CH(2)PPh(2))(3)] was synthesized and characterized by spectroscopic methods and X-ray crystallography. Its reactivity with strong (HBF(4)) and medium-strength [the fluorinated alcohols 1,1,1-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP)] proton donors was investigated through low-temperature IR and multinuclear NMR spectroscopy. In the case of the weak acid TFE, the only species observed in the 190-298 K temperature range was the dihydrogen-bonded adduct between the hydride and the alcohol, while with the stronger acid HBF(4), the proton transfer was complete, giving rise to a new intermediate [(kappa(3)-P,P,P-NP(3))IrH(4)](+).

View Article and Find Full Text PDF

The interaction of the carbonyl hydride complex Cp*Mo(PMe(3))(2)(CO)H with Brønsted (fluorinated alcohols, (CF(3))(n)CH(3-n)OH (n = 1-3), and CF(3)COOH) and Lewis (Hg(C(6)F(5))(2), BF(3).OEt(2)) acids was studied by variable temperature IR and NMR ((1)H, (31)P, (13)C) spectroscopies in combination with DFT/B3LYP calculations. Among the two functionalities potentially capable of the interaction - carbonyl and hydride ligands - the first was found to be the preferential binding site for weak acids, yielding CO.

View Article and Find Full Text PDF

Low-temperature (200 K) protonation of [Mo(CO)(Cp*)H(PMe(3))(2)] (1) by Et(2)OHBF(4) gives a different result depending on a subtle solvent change: The dihydrogen complex [Mo(CO)(Cp*)(eta(2)-H(2))(PMe(3))(2)](+) (2) is obtained in THF, whereas the tautomeric classical dihydride [Mo(CO)(Cp*)(H)(2)(PMe(3))(2)](+) (3) is the only observable product in dichloromethane. Both products were fully characterised (nu(CO) IR; (1)H, (31)P, (13)C NMR spectroscopies) at low temperature; they lose H(2) upon warming to 230 K at approximately the same rate (ca. 10(-3) s(-1)), with no detection of the non-classical form in CD(2)Cl(2), to generate [Mo(CO)(Cp*)(FBF(3))(PMe(3))(2)] (4).

View Article and Find Full Text PDF

Proton-transfer and H(2)-elimination reactions of aluminum hydride AlH(3)(NMe(3)) (TMAA) with XH acids were studied by means of IR and NMR spectroscopy and DFT calculations. The dihydrogen-bonded (DHB) intermediates in the interaction of the TMAA with XH acids (CH(3)OH, (i)PrOH, CF(3)CH(2)OH, adamantyl acetylene, indole, 2,3,4,5,6-pentafluoroaniline, and 2,3,5,6-tetrachloroaniline) were examined experimentally at low temperatures, and the spectroscopic characteristics, dihydrogen bond strength and structures, and the electronic and energetic characteristics of these complexes were determined by combining experimental and theoretical approaches. The possibility of two different types of DHB complexes with polydentate proton donors (typical monodentate and bidentate coordination with the formation of a symmetrical chelate structure) was shown by DFT calculations and was experimentally proven in solution.

View Article and Find Full Text PDF

The compound [Cp*Mo(PMe3)3H] (1) is reversibly oxidized at E1/2 = -1.40 V vs ferrocene in MeCN. Its oxidation with Cp2FePF6 yields thermally stable [Cp*Mo(PMe3)3H]PF6 (2), which has been isolated and characterized by IR and EPR spectroscopy and by single-crystal X-ray diffraction.

View Article and Find Full Text PDF

The hydrogen-bonding and proton-transfer pathway to complex [Cp*W(dppe)H(3)] (Cp*=eta(5)-C(5)Me(5); dppe=Ph(2)PCH(2)CH(2)PPh(2)) was investigated experimentally by IR, NMR, UV/Vis spectroscopy in the presence of fluorinated alcohols, p-nitrophenol, and HBF(4), and by using DFT calculations for the [CpW(dhpe)H(3)] model (Cp=eta(5)-C(5)H(5); dhpe=H(2)PCH(2)CH(2)PH(2)) and for the real system. A study of the interaction with weak acids (CH(2)FCH(2)OH, CF(3)CH(2)OH, (CF(3))(2)CHOH) allowed the determination of the basicity factor, E(j)=1.73+/-0.

View Article and Find Full Text PDF