Publications by authors named "Lina Hatahet"

Na(+)/H(+) antiporters show a marked pH dependence, which is important for their physiological function in eukaryotic and prokaryotic cells. In NhaA, the Escherichia coli Na(+)/H(+) antiporter, specific single site mutations modulating the pH profile of the transporter have been described in the past. To clarify the mechanism by which these mutations influence the pH dependence of NhaA, the substrate dependence of the kinetics of selected NhaA variants was electrophysiologically investigated and analyzed with a kinetic model.

View Article and Find Full Text PDF

The electrophysiological method we present is based on a solid supported membrane (SSM) composed of an octadecanethiol layer chemisorbed on a gold coated sensor chip and a phosphatidylcholine monolayer on top. This assembly is mounted into a cuvette system containing the reference electrode, a chlorinated silver wire. After adsorption of membrane fragments or proteoliposomes containing the membrane protein of interest, a fast solution exchange is used to induce the transport activity of the membrane protein.

View Article and Find Full Text PDF

In anaerobically grown bacteria, transport of nitrite is catalyzed by an integral membrane protein of the form ate-nitrite transporter family, NirC, which in Salmonella typhimurium plays a critical role in intracellular virulence. We present a functional characterization of the S. typhimurium nitrite transporter StmNirC in native membrane vesicles as well as purified and reconstituted into proteoliposomes.

View Article and Find Full Text PDF

Application of solid supported membranes (SSMs) for the functional investigation of ion channels is presented. SSM-based electrophysiology, which has been introduced previously for the investigation of active transport systems, is expanded for the analysis of ion channels. Membranes or liposomes containing ion channels are adsorbed to an SSM and a concentration gradient of a permeant ion is applied.

View Article and Find Full Text PDF

Ion binding to a lipid membrane is studied by application of a rapid solution exchange on a solid supported membrane. The resulting charge displacement is analyzed in terms of the affinity of the applied ions to the lipid surface. We find that chaotropic anions and kosmotropic cations are attracted to the membrane independent of the membrane composition.

View Article and Find Full Text PDF

Attempts to treat peanut allergy using traditional methods of allergen desensitization are accompanied by a high risk of anaphylaxis. The aim of this study was to determine if modifications to the IgE-binding epitopes of a major peanut allergen would result in a safer immunotherapeutic agent for the treatment of peanut-allergic patients. IgE-binding epitopes on the Ara h 2 allergen were modified, and modified Ara h 2 (mAra h 2) protein was produced.

View Article and Find Full Text PDF