Publications by authors named "Lina Gomez-Cano"

Article Synopsis
  • Transcription factors (TFs) are crucial for regulating gene expression and influencing an organism's traits, and gene-regulatory networks (GRNs) are used to identify potential target genes for these TFs.
  • Researchers conducted experiments in maize using a reverse genetics approach to isolate mutant alleles of 22 TFs but found no significant physical changes in the plants.
  • Although no major morphological changes were observed, transcriptomic profiling revealed differences in gene expression and phenolic compound levels in some mutants, suggesting that while individual TFs may not show dramatic effects, they can still influence gene regulatory networks.
View Article and Find Full Text PDF

Variation in gene expression levels is pervasive among individuals and races or varieties, and has substantial agronomic consequences, for example, by contributing to hybrid vigor. Gene expression level variation results from mutations in regulatory sequences (cis) and/or transcription factor (TF) activity (trans), but the mechanisms underlying cis- and/or trans-regulatory variation of complex phenotypes remain largely unknown. Here, we investigated gene expression variation mechanisms underlying the differential accumulation of the insecticidal compounds maysin and chlorogenic acid in silks of widely used maize (Zea mays) inbreds, B73 and A632.

View Article and Find Full Text PDF

Elucidating gene regulatory networks is a major area of study within plant systems biology. Phenotypic traits are intricately linked to specific gene expression profiles. These expression patterns arise primarily from regulatory connections between sets of transcription factors (TFs) and their target genes.

View Article and Find Full Text PDF

Maize (Zea mays) production systems are heavily reliant on the provision of managed inputs such as fertilizers to maximize growth and yield. Hence, the effective use of nitrogen (N) fertilizer is crucial to minimize the associated financial and environmental costs, as well as maximize yield. However, how to effectively utilize N inputs for increased grain yields remains a substantial challenge for maize growers that requires a deeper understanding of the underlying physiological responses to N fertilizer application.

View Article and Find Full Text PDF

In biological research domains, liquid chromatography-mass spectroscopy (LC-MS) has prevailed as the preferred technique for generating high quality metabolomic data. However, even with advanced instrumentation and established data acquisition protocols, technical errors are still routinely encountered and can pose a significant challenge to unveiling biologically relevant information. In large-scale studies, signal drift and batch effects are how technical errors are most commonly manifested.

View Article and Find Full Text PDF

In plants, the deoxy sugar l-rhamnose is widely present as rhamnose-containing polymers in cell walls and as part of the decoration of various specialized metabolites. Here, we review the current knowledge on the distribution of rhamnose, highlighting the differences between what is known in dicotyledoneuos compared to commelinid monocotyledoneous (grasses) plants. We discuss the biosynthesis and transport of UDP-rhamnose, as well as the transfer of rhamnose from UDP-rhamnose to various primary and specialized metabolites.

View Article and Find Full Text PDF

Phenolic compounds are among the most diverse and widespread of specialized plant compounds and underly many important agronomic traits. Our comprehensive analysis of the maize genome unraveled new aspects of the genes involved in phenylpropanoid, monolignol, and flavonoid production in this important crop. Remarkably, just 19 genes accounted for 70 % of the overall mRNA accumulation of these genes across 95 tissues, indicating that these are the main contributors to the flux of phenolic metabolites.

View Article and Find Full Text PDF