Clin Rev Allergy Immunol
January 2025
Exosomes, small extracellular vesicles secreted by various cell types, have emerged as key players in the pathophysiology of autoimmune diseases. These vesicles serve as mediators of intercellular communication, facilitating the transfer of bioactive molecules such as proteins, lipids, and nucleotide. In autoimmune diseases, exosomes have been implicated in modulating immune responses, oxidative stress, autophagy, gut microbes, and the cell cycle, contributing to disease initiation, progression, and immune dysregulation.
View Article and Find Full Text PDFHum Vaccin Immunother
December 2024
To evaluate the performance of "Vaccination Rates Monitoring Report System" implemented by Shenzhen CDC, we conducted an analysis of the data quality and identify key areas for system improvement. Following evaluation guidelines provided by WHO and United States CDC, we established six evaluation attributes: representativeness, simplicity, acceptability, data reliability, stability and timeliness. In eastern, central and western regions of Shenzhen, we selected one district from each region, of which the local CDC and ten CHSCs under jurisdiction were chosen for evaluation.
View Article and Find Full Text PDFEsophageal squamous cell carcinoma (ESCC) is a prevalent malignant tumor of the digestive tract with a low 5-year survival rate due to the lack of effective treatment methods. Although therapeutic monoclonal antibodies (mAbs) now play an important role in cancer therapy, effective targeted mAbs are still lacking for ESCC. B7-H3 is highly expressed in a variety of tumors and has emerged as a promising therapeutic target.
View Article and Find Full Text PDFWorld J Clin Cases
October 2023
Background: Mucoepidermoid carcinoma of the lung is a rare malignant tumor, accounting for 0.1%-0.2% of all lung malignancies.
View Article and Find Full Text PDFWe have experimentally observed an ultrashort conventional vector soliton in an erbium-doped fiber laser. The few-layered graphene oxide (GO) is used as a saturable absorber (SA). It is found that the saturable absorption characteristic of GO is polarization independent.
View Article and Find Full Text PDFT-LAK-originated protein kinase (TOPK), a dual specificity serine/threonine kinase, is up-regulated and related to poor prognosis in many types of cancers. Y-box binding protein 1 (YB1) is a DNA/RNA binding protein and serves important roles in multiple cellular processes. Here, we reported that TOPK and YB1 were both highly expressed in esophageal cancer (EC) and correlated with poor prognosis.
View Article and Find Full Text PDFGastric cancer is the fourth leading cause of cancer deaths worldwide. Most patients are diagnosed in the advanced stage. Inadequate therapeutic strategies and the high recurrence rate lead to the poor 5-year survival rate.
View Article and Find Full Text PDFTargeted therapy attempts are needed to enhance esophageal squamous cell carcinoma (ESCC) patients' overall survival and satisfaction of life. Nuclear factor erythroid 2-related factor 2 (NRF2), as a high-confidence cancer driver gene, controls the antioxidant response, metabolic balance and redox homeostasis in cancer and is regarded as a potent molecular target for cancer treatment. Here, we attempted to find a new NRF2 inhibitor and study the underlying molecular mechanism in ESCC.
View Article and Find Full Text PDFThe shape of a plant's root system influences its ability to reach essential nutrients in the soil and to acquire water during drought. Progress in engineering plant roots to optimize water and nutrient acquisition has been limited by our capacity to design and build genetic programs that alter root growth in a predictable manner. We developed a collection of synthetic transcriptional regulators for plants that can be compiled to create genetic circuits.
View Article and Find Full Text PDFThe phytohormone abscisic acid (ABA) is a central regulator of acclimation to environmental stress; however, its contribution to differences in stress tolerance between species is unclear. To establish a comparative framework for understanding how stress hormone signalling pathways diverge across species, we studied the growth response of four Brassicaceae species to ABA treatment and generated transcriptomic and DNA affinity purification and sequencing datasets to construct a cross-species gene regulatory network (GRN) for ABA. Comparison of genes bound directly by ABA-responsive element binding factors suggests that cis-factors are most important for determining the target loci represented in the ABA GRN of a particular species.
View Article and Find Full Text PDFPhotosynthesis in leaves generates fixed-carbon resources and essential metabolites that support sink tissues, such as roots. Two of these metabolites, sucrose and auxin, promote growth in root systems, but the explicit connection between photosynthetic activity and control of root architecture has not been explored. Through a mutant screen to identify pathways regulating root system architecture, we identified a mutation in the Arabidopsis thaliana CYCLOPHILIN 38 (CYP38) gene, which causes accumulation of pre-emergent stage lateral roots.
View Article and Find Full Text PDFLongitudinally oriented microstructures are essential for a nerve scaffold to promote the significant regeneration of injured peripheral axons across nerve gaps. In the current study, we present a novel nerve-guiding collagen-chitosan (CCH) scaffold that facilitated the repair of 30 mm-long sciatic nerve defects in beagles. The CCH scaffolds were observed with a scanning electron microscope.
View Article and Find Full Text PDFThe water stress-associated hormone abscisic acid (ABA) acts through a well-defined signal transduction cascade to mediate downstream transcriptional events important for acclimation to stress. Although ABA signaling is known to function in specific tissues to regulate root growth, little is understood regarding the spatial pattern of ABA-mediated transcriptional regulation. Here, we describe the construction and evaluation of an ABSCISIC ACID RESPONSIVE ELEMENT (ABRE)-based synthetic promoter reporter that reveals the transcriptional response of tissues to different levels of exogenous ABA and stresses.
View Article and Find Full Text PDFWe present an all-fiber all-polarization-maintaining (PM) single mode (SM) fiber pulse nonlinear amplification system. The seed laser with a repetition rate of 200 MHz is amplified by two-section erbium-doped PM gain fibers with different peak-absorption rate. The amplified pulse duration can be compressed into 34-fs with 320-mW output power, which corresponds to 1.
View Article and Find Full Text PDFThe report firstly propose a new WS(2) absorber based on fluorine mica (FM) substrate. The WS(2) material was fabricated by thermal decomposition method. The FM was stripped into one single layer as thin as 20 μm and deposited WS(2) on it, which can be attached to the fiber flank without causing the laser deviation.
View Article and Find Full Text PDFAn expanded pyridyl-decorated MOF-505 analogue[Cu2(L)(H2O)2]·G(x) (H4L = 5,5'-(pyridine-2,5-diyl)diisophthalic acid, G = solvent molecule) has been solvothermally synthesized and reported. It exhibited rare hierarchical meso- and microporosity. With exposed unsaturated Cu(II) sites and Lewis basic pyridyl sites, the material shows both large CO2-uptake capacity (123.
View Article and Find Full Text PDFWe demonstrate an all polarization-maintaining (PM) fiber-based optical frequency comb and provide the detailed environmental stability analysis results. The frequency comb has been built by commercial available PM fiber completely, and its static uncertainty in optical domain is 350 Hz in 1 s when referenced to a low noise oven controlled crystal oscillator. The acoustic resonant frequencies of the system have been measured.
View Article and Find Full Text PDFA new interpenetrated bioactive nonlinear optical metal-organic framework [Zn2(ppa)2(1,3-bdc)(H2O)] has been designed and synthesized, which shows both a high drug content of 63.9% and a good slow release effect in simulated physical conditions compared to other non-interpenetrated bioactive MOFs. It also shows a large powder second-harmonic generation (SHG) efficiency of 5.
View Article and Find Full Text PDFIn order to acclimate to the soil environment, plants need to constantly optimize their root system architecture for efficient resource uptake. Roots are highly sensitive to changes in their surrounding environment and root system responses to a stress such as salinity and drought can be very dynamic and complex in nature. These responses can be manifested differentially at the cellular, tissue, or organ level and between the types of roots in a root system.
View Article and Find Full Text PDFThree new supramolecular assemblies SA1-SA3 with different linkages between the photosensitizer and catalyst have been synthesized for light driven water oxidation. With flexible -CH(2)-CH(2)- chains as the linkage, the assembly SA3 displays the best performance for photocatalytic water oxidation compared with the other two assemblies, a turnover number of 34 has been obtained based on the molecular assembly SA3 in a homogeneous system. This type of assembly connected with flexible linkages represents suitable candidates to construct photoanodes for light driven water splitting in dye sensitized photoelectrochemical devices.
View Article and Find Full Text PDFThe root endodermis is characterized by the Casparian strip and by the suberin lamellae, two hydrophobic barriers that restrict the free diffusion of molecules between the inner cell layers of the root and the outer environment. The presence of these barriers and the position of the endodermis between the inner and outer parts of the root require that communication between these two domains acts through the endodermis. Recent work on hormone signaling, propagation of calcium waves, and plant-fungal symbiosis has provided evidence in support of the hypothesis that the endodermis acts as a signaling center.
View Article and Find Full Text PDFThe architecture of the branched root system of plants is a major determinant of vigor. Water availability is known to impact root physiology and growth; however, the spatial scale at which this stimulus influences root architecture is poorly understood. Here we reveal that differences in the availability of water across the circumferential axis of the root create spatial cues that determine the position of lateral root branches.
View Article and Find Full Text PDFPlant environmental responses involve dynamic changes in growth and signaling, yet little is understood as to how progress through these events is regulated. Here, we explored the phenotypic and transcriptional events involved in the acclimation of the Arabidopsis thaliana seedling root to a rapid change in salinity. Using live-imaging analysis, we show that growth is dynamically regulated with a period of quiescence followed by recovery then homeostasis.
View Article and Find Full Text PDFThe endodermal tissue layer is found in the roots of vascular plants and functions as a semipermeable barrier, regulating the transport of solutes from the soil into the vascular stream. As a gateway for solutes, the endodermis may also serve as an important site for sensing and responding to useful or toxic substances in the environment. Here, we show that high salinity, an environmental stress widely impacting agricultural land, regulates growth of the seedling root system through a signaling network operating primarily in the endodermis.
View Article and Find Full Text PDFWe have experimentally observed conventional solitons and rectangular pulses in an erbium-doped fiber laser operating at anomalous dispersion regime. The rectangular pulses exhibit broad quasi-Gaussian spectra (~40 nm) and triangular autocorrelation traces. With the enhancement of pump power, the duration and energy of the output rectangular pulses almost increase linearly up to 330 ps and 3.
View Article and Find Full Text PDF