Nicaraven has been reported to inhibit the activity of poly (ADP-ribose) polymerase (PARP). In this study, we investigated the probable ability of nicaraven to attenuate cancer radioresistance during fractionated radiotherapy. Tumor models were established in C57BL/6 mice and BALB/c nude mice by subcutaneous injection of Lewis mouse lung carcinoma cancer cells and A549 human lung cancer cells, respectively.
View Article and Find Full Text PDFNicaraven selectively protects normal tissue from radiation-induced injury. To further develop the clinical application of nicaraven for mitigating the side effects of cancer radiotherapy, we investigated the potential effect of nicaraven administration in radiation-induced inhibition of tumor growth. A subcutaneous tumor model was established in mice by the injection of Lewis lung cancer cells at the back of the chest.
View Article and Find Full Text PDFObjective: Radiation-induced lung injury (RILI) is one of the serious complications of radiotherapy. We have recently demonstrated that nicaraven can effectively mitigate RILI in healthy mice. Here, we further tried to optimize the dose and time of nicaraven administration for alleviating the side effects of radiotherapy in tumor-bearing mice.
View Article and Find Full Text PDFThe PARP-1 expression level and poly (ADP-ribosyl)ation activity in cancer markedly affect the therapeutic outcome. Nicaraven, a free radical scavenger has been found to inhibit PARP, but the effect on cancer cells is still unclear. In this study, we investigated the potential role and molecular mechanism of nicaraven on cancer cells.
View Article and Find Full Text PDFInflammatory microenvironment is known to accelerate the progression of malignant tumors. We investigated the possible anti-inflammatory effect of nicaraven on slowing tumor growth. Tumor-bearing mice randomly received nicaraven injection (50 mg/kg daily, i.
View Article and Find Full Text PDFThe tissue microenvironment is known to play a pivotal role in cancer metastasis. Interstitial fluid hydrostatic pressure generally increases along with the rapid growth of malignant tumors. The aim of the present study was to investigate the role and relevant mechanism of elevated hydrostatic pressure in promoting the metastasis of cancer cells.
View Article and Find Full Text PDFDipyridamole, a traditional anti-platelet drug, has been reported to inhibit the proliferation of cancer cells. The present study aimed to investigate the possibility of dipyridamole as an adjuvant of chemotherapy by enhancing the cytotoxicity of an anti-cancer drug. The cytotoxicity of colorectal cancer cells (HCT-8), CD133/CD44 stem-like subpopulation of HCT-8 cells and lymphoma cells (U937) to dipyridamole and/or doxorubicin was evaluated using MTT proliferation and colony forming assays.
View Article and Find Full Text PDF