This work develops a bioactive basic fibroblast growth factor (bFGF)/heparin and FeO nanoparticles (NPs) trifunctionalized degradable construct with the potential of using as a vascular tissue engineering scaffold with the aim of improving vascular repair and regeneration therapy. The covalent modification of heparin onto the poly(lactic acid) (PLA)-gelatin (Gel)-FeO (PGF) scaffold improves the hydrophilicity of the scaffold. Furthermore, the electrostatic adsorption of bFGF on heparin allows for a more consistent and prolonged release of bFGF in situ, hence increasing the stability and effectiveness of bFGF around the surrounding vascular tissues.
View Article and Find Full Text PDFThe challenge of producing polymer vesicles remains difficult, despite numerous attempts to modulate the kinetics of polymer vesicle budding and achieve precise control over the membrane characteristics. An innovative approach that incorporates the use of copolymer-loaded single-emulsion droplets is proposed to address this challenge. This method enables the precise manipulation of micelles and polymer vesicles' composition, structures and dimensions.
View Article and Find Full Text PDFColorless polyimides (CPIs) are widely used as high-performance materials in flexible electronic devices. From a molecular design standpoint, the industry continues to encounter challenges in developing CPIs with desired attributes, including exceptional optical transparency, excellent thermal stability, and enhanced mechanical strength. This study presents and validates a method for controlling 2-substituents, with a specific emphasis on examining how these substituents affect the thermal, mechanical, optical, and dielectric characteristics of CPIs.
View Article and Find Full Text PDFVascular defects caused by trauma or vascular diseases can significantly impact normal blood circulation, resulting in serious health complications. Vascular grafts have evolved as a popular approach for vascular reconstruction with promising outcomes. However, four of the greatest challenges for successful application of small-diameter vascular grafts are (1) postoperative anti-infection, (2) preventing thrombosis formation, (3) utilizing the inflammatory response to the graft to induce tissue regeneration and repair, and (4) noninvasive monitoring of the scaffold and integration.
View Article and Find Full Text PDFThe employment of flexible piezoresistive sensors has sparked growing interest within the realm of wearable electronic devices, specifically in the fields of health detection and e-skin. Nevertheless, the advancement of piezoresistive sensors has been impeded by their limited sensitivity and restricted operating ranges. Consequently, it is imperative to fabricate sensors with heightened sensitivity and expanded operating ranges through the utilization of the appropriate methodologies.
View Article and Find Full Text PDFObjective: This study assesses the efficacy of rituximab in the treatment of neuromyelitis optica spectrum disorders (NMOSD).
Methods: The study initially included 40 patients with NMOSD diagnosed, after excluding patients who did not meet the complete inclusion criteria. Patients in the conventional group received routine clinical treatment, while patients in the study group received additional treatment with rituximab on the basis of the conventional treatment.
Escherichia coli O157: H7 (E. coli O157: H7) is one of the most common foodborne pathogens and is widespread in food and the environment. Thus, it is significant for rapidly detecting E.
View Article and Find Full Text PDFOwing to the advantages of the in situ production of toxic agents through catalytic reactions, nanocatalytic therapy has arisen as a highly potential strategy for cancer therapeutics in recent years. However, the insufficient amount of endogenous hydrogen peroxide (HO) in the tumor microenvironment commonly limits their catalytic efficacy. Here, we employed carbon vesicle nanoparticles (CV NPs) with high near-infrared (NIR, 808 nm) photothermal conversion efficiency as carriers.
View Article and Find Full Text PDFBacterial-induced infectious diseases have always caused an unavoidable problem and lead to an increasing threat to human health. Hence, there is an urgent need for effective antibacterial strategies to treat infectious diseases. Current methods are often ineffective and require large amounts of hydrogen peroxide (HO), with harmful effects on normal healthy tissue.
View Article and Find Full Text PDFThe intestinal barrier protects the host from harmful substances. This paper investigated two polysaccharides extracted from the Hericium erinaceus before and after fermentation (HEP and FHEP). The effects of two polysaccharides on the intestinal barrier were investigated in cell and mice models.
View Article and Find Full Text PDFCarbon-based nanomaterials have a high specific surface area, biocompatibility, and controlled mesopore structures. These characteristics make carbon nanospheres excellent carriers for drugs, biological dyes, photosensitizers, etc. Nevertheless, little is known about the impact of topological features on the surface of carbon nanomaterials on their in vivo immunoreactivity.
View Article and Find Full Text PDFA multi-functional nanocatalytic system based on combined therapies has attracted considerable research attention in recent years due to its potential in the treatment of cancer. Herein, ZnO@Au@ZIF-67 nanoparticles (NPs) based on hydroxyl radical (•OH) mediated chemodynamic therapy (CDT) and glucose-exhausting starvation therapy (ST) were constructed. Specifically, in the acidic tumor microenvironment (TME), the pH responsive decomposition of the shell ZIF-67 triggered the release of the Fenton-like catalyst Co, after which the exposed zinc peroxide (ZnO) reacted with HO (H) to generate O and hydrogen peroxide (HO).
View Article and Find Full Text PDFThe development of antivirus air filter materials has attracted considerable interests due to the pandemic of coronavirus disease 2019 (COVID-19). Filtration efficiency (FE) of these materials against virus is critical in the assessment of their use in disease prevention. Due to the high cost and biosafety laboratory required for conducting research using actual virus samples, surrogates for virus are commonly used in the filtration test.
View Article and Find Full Text PDFFor chronic persistent skin injuries, functional wound dressings with improved antibacterial action and cell control are extremely appealing. In this study, we design and fabricate a composite fiber dressing with near-infrared (NIR) laser-induced hyperthermia and transformable topographies that can protect the wound from bacterial infection while also encouraging cell recruitment and tissue regeneration. Polycaprolactone/gelatin (PCL/Gel) with melting point close to photothermal temperature were electrospun as the supporting matrix.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2021
One of the current challenges in the post-operative treatment of breast cancer is to develop a local therapeutic vector for preventing recurrence and metastasis. Herein, we develop a core-shell fibrous scaffold comprising phase-change materials and photothermal/chemotherapy agents, as a thermal trigger for programmable-response drug release and synergistic treatment. The scaffold is obtained by in situ growth of a zeolitic imidazolate framework-8 (ZIF-8) shell on the surface of poly(butylene succinate)/lauric acid (PBS/LA) phase-change fibers (PCFs) to create PCF@ZIF-8.
View Article and Find Full Text PDFA visible-blind ultraviolet (UV) photodetector can detect UV signals and is not interfered with by visible light or infrared light in the environment. In order to realize high-performance visible-blind UV organic photodetectors (OPDs), we design photomultiplication-type (PM-type) OPDs by using a novel strategy. Firstly, wide bandgap organic semiconductor materials, which do not absorb visible light, are selected as donors to absorb UV light.
View Article and Find Full Text PDFRegulating cell behavior and function by surface topography has drawn significant attention in tissue engineering. Herein, a gradient fibrous scaffold comprising anisotropic aligned fibers and isotropic annealed fibers was developed to provide a controllable direction of cell migration, adhesion, and spreading. The electrospun aligned fibers were engraved to create surface gradients with micro-and-nanometer roughness through block copolymer (BCP) self-assembly induced by selective solvent vapor annealing (SVA).
View Article and Find Full Text PDFCardiovasc Diagn Ther
August 2020
Background: Doxorubicin (DOX) is one of the most effective anti-neoplastic drugs although its clinical use is limited by the severe cardiotoxicity. Apoptosis and defective autophagy are believed to contribute to DOX-induced cardiotoxicity. Here we explored the effect of curcumin (Cur) on DOX-induced cardiac injury and the mechanism involved with a focus on oxidative stress, autophagy and pyroptosis.
View Article and Find Full Text PDFProkineticin 2 (PK2) is a small 8 kDa protein that participates in many physiological processes, such as angiogenesis, inflammation, and neurogenesis. This experiment investigated the effect of PK2 on high glucose/high palmitic acid-induced oxidative stress, apoptosis, and autophagy in cardiomyocytes and the AKT/GSK3 signalling pathway. H9c2 cells were exposed to normal and high concentrations (33 mM) of glucose and palmitic acid (150 M) with or without PK2 (10 nM) for 48 h.
View Article and Find Full Text PDFOne of the current challenges in burn wound care is the development of multifunctional dressings that can protect the wound from bacteria or organisms and promote skin regeneration and tissue reconstitution. To this end, we report the design and fabrication of a composite electrospun membrane, comprised of electrospun polylactide: poly(vinyl pyrrolidone)/polylactide: poly(ethylene glycol) (PLA:PVP/PLA:PEG) core/shell fibers loaded with bioactive agents, as a functionally integrated wound dressing for efficient burns treatment. Different mass ratios of PLA:PVP in the shell were screened to optimize mechanical, physicochemical, and biological properties, in addition to controlled release profiles of loaded antimicrobial peptides (AMPs) from the fibers for desirable antibacterial activity.
View Article and Find Full Text PDFElectrospinning provides a versatile and cost-effective route for the generation of continuous nanofibres with high surface area-to-volume ratio from various polymers. In parallel, block copolymers (BCPs) are promising candidates for many diverse applications, where nanoscale operation is exploited, owing to their intrinsic self-assembling behaviour at these length scales. Judicious combination of BCPs (with their ability to make nanosized domains at equilibrium) and electrospinning (with its ability to create nano- and microsized fibres and particles) allows one to create BCPs with high surface area-to-volume ratio to deliver higher efficiency or efficacy in their given application.
View Article and Find Full Text PDF