Publications by authors named "Lin-gui Xue"

To determine the water quality status of the primary tributaries in middle and lower reaches of the Yellow River Basin, water collected from the confluence of the ten tributaries and some physical, chemical and biological parameters were analyzed, and then water quality index and health risk were evaluated. Of the ten main tributaries in the middle and lower reaches, only the Qingshui River had water of medium quality in the upper reaches, while all the other tributaries contributed water of poor quality. The Jindi and Dawen rivers in the lower reaches had the poorest water quality, especially the Jindi River.

View Article and Find Full Text PDF

To develop the microbial resources of the Yellow River, seven water samples were collected along the Lanzhou region of the river from upstream to downstream for testing. Analysis of various physico-chemical indexes was conducted, and key parameters influencing the water quality were selected through principal component analysis, after which the decisive factors impacting water quality were determined by correlation and regression analysis. The results indicated that (1) DO, NH-N, NO-N, TN, TC, As, Cr and Pb were the main physico-chemical factors influencing water quality in the Lanzhou region, with NH-N having the greatest effect.

View Article and Find Full Text PDF

The Yellow River flows through Lanzhou city and is the only drinking water source for 3.6 million residents. Yet, little is known regarding the safety and quality of the Yellow River for resident consumption.

View Article and Find Full Text PDF

This study first described the composition and characteristics of culturable endophytic bacteria isolated from wild alpine-subnival plant species growing under extreme environmental conditions (i.e., on the border of a glacier with frequently fluctuating and freezing temperatures, strong wind, and high ultraviolet radiation).

View Article and Find Full Text PDF

Continuing depletion of the stratospheric ozone layer by atmospheric pollutants, in particular chlorofluorocarbons (CFCs), has resulted in an increasing incidence of solar UV-B (280-320 nm) at the Earth's surface. Enhanced UV-B radiation has been considered as important global environmental problem and results in important effects to mankind and the entire global ecosystem. Nitric oxide (NO) is not only a toxic molecule, one of reactive nitrogen species (RNS), but also an important redox-active signaling molecule.

View Article and Find Full Text PDF