Genome-wide association studies have identified numerous single-nucleotide polymorphisms (SNPs) associated with lung cancer; however, the functions of histone deacetylase 2 (HDAC2) rs13213007 and HDAC2 in nonsmall cell lung cancer (NSCLC) remain unclear. Here we identified HDAC2 rs13213007 as a risk SNP and showed that HDAC2 was upregulated in both peripheral blood mononuclear cells (PBMCs) and NSCLC tissues with the rs13213007 A/A genotype compared with those with the rs13213007 G/G or G/A genotype. Patient clinical data indicated strong associations between rs13213007 genotype and N classification.
View Article and Find Full Text PDFPurpose: Protein phosphatase 4 catalytic subunit (PP4C) has been shown to play crucial regulatory roles in biological process and is frequently upregulated in cancer such as breast and colorectal carcinoma. However, the function and potential molecular mechanism of PP4C in lung cancer remains unclear.
Methods: Bioinformatic analysis was used to detect the expression level and prognosis of patients.
Protein phosphatase 4 regulatory subunit 1 (PP4R1) has been shown to play a role in the regulation of centrosome maturation, apoptosis, DNA repair, and tumor necrosis factor signaling. However, the function of PP4R1 in non-small-cell lung cancer remains unclear. In this study, we identify PP4R1 as an oncogene through Oncomine database mining and immunohistochemical staining, and we showed that PP4R1 is upregulated in lung cancer tissues as compared with that in normal lung tissues and correlated with a poor prognosis in lung cancer patients.
View Article and Find Full Text PDF