Members of the mitochondrial transcription terminator factor (mTERF) family, originally identified in vertebrate mitochondria, are involved in the termination of organellular transcription. In plants, mTERF proteins are mainly localized in chloroplasts and mitochondria. In Arabidopsis (), mTERF8/pTAC15 was identified in the plastid-encoded RNA polymerase (PEP) complex, the major RNA polymerase of chloroplasts.
View Article and Find Full Text PDFRNA editing in chloroplasts and mitochondria is performed by hypothetical editosomes. The MORF family proteins are essential components of these editosomes. In Arabidopsis, MORF2 and MORF9 are involved in the editing of most sites in chloroplasts.
View Article and Find Full Text PDFIn higher plant chloroplasts, the plastid-encoded RNA polymerase (PEP) consists of four catalytic subunits and numerous nuclear-encoded accessory proteins, including pTAC10, an S1-domain-containing protein. In this study, pTAC10 knockout lines were characterized. Two ptac10 mutants had an albino phenotype and severely impaired chloroplast development.
View Article and Find Full Text PDFThe pentatricopeptide repeat-DYW protein AtECB2 affects plastid RNA editing at seven sites, including accD-794, accD-1568, ndhF-290, ndhG-50, petL-5, rpoA-200 and rpoC1-488. To understand the mechanism of its involvement in RNA editing, a transgenic line was constructed with AtECB2 fused to a 4xMYC tag that could complement the atecb2 phenotype. RNA immunoprecipitation analysis indicated that AtECB2 is associated with the transcripts of accD, ndhF, ndhG and petL.
View Article and Find Full Text PDFIn higher plants, chloroplasts carry out many important functions, and normal chloroplast development is required for embryogenesis. Numerous chloroplast-targeted proteins involved in embryogenesis have been identified. Nevertheless, their functions remain unclear.
View Article and Find Full Text PDFThe fructokinase-like protein2 (FLN2) is a component of the PEP complex. FLN2 knockout mutants displayed a delayed greening phenotype on sucrose-containing medium. Our previous work indicated that partial PEP activity is essential for its greening phenotype.
View Article and Find Full Text PDF