Publications by authors named "Lin-Lin Long"

In this work, by ingeniously integrating catalytic hairpin assembly (CHA), double-end Mg-dependent DNAzyme, and hybridization chain reaction (HCR) as a triple cascade signal amplifier, an efficient concatenated CHA-DNAzyme-HCR (CDH) system was constructed to develop an ultrasensitive electrochemical biosensor with a low-background signal for the detection of microRNA-221 (miRNA-221). In the presence of the target miRNA-221, the CHA cycle was initiated by reacting with hairpins H1 and H2 to form DNAzyme structure H1-H2, which catalyzed the cleavage of the substrate hairpin H0 to release two output DNAs (output 1 and output 2). Subsequently, the double-loop hairpin H fixed on the electrode plate was opened by the output DNAs, to trigger the HCR with the assistance of hairpins Ha and Hb.

View Article and Find Full Text PDF

Herein, an antibody-protein-aptamer electrochemical biosensor was designed by highly efficient proximity-induced DNA hybridization on a tetrahedral DNA nanostructure (TDN) for ultrasensitive detection of human insulin-like growth factor-1 (IGF-1). Impressively, the IGF-1 antibody immobilized on the top vertex of the TDN could effectively capture the target protein with less steric effect, and the ferrocene-labeled signal probe (SP) bound on the bottom vertex of the TDN was close to the electrode surface for generating a strong initial signal. In the presence of target protein IGF-1 and an aptamer strand, an antibody-protein-aptamer sandwich could be formed on the top vertex of TDN, which would trigger proximity-induced DNA hybridization to release the SP on the bottom vertex of TDN; therefore, the signal response would decrease dramatically, enhancing the sensitivity of the biosensor.

View Article and Find Full Text PDF