EBioMedicine
September 2024
Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid and significant decrease in renal function that can arise from various etiologies, and is associated with high morbidity and mortality. The renal tubular epithelial cells (TECs) represent the central cell type affected by AKI, and their notable regenerative capacity is critical for the recovery of renal function in afflicted patients. The adaptive repair process initiated by surviving TECs following mild AKI facilitates full renal recovery.
View Article and Find Full Text PDFThe transition from acute kidney injury (AKI) to chronic kidney disease (CKD) is a critical clinical issue. Although previous studies have suggested macrophages as a key player in promoting inflammation and fibrosis during this transition, the heterogeneity and dynamic characterization of macrophages are still poorly understood. Here, we used integrated single-cell RNA sequencing and spatial transcriptomic to characterize the spatiotemporal heterogeneity of macrophages in murine AKI-to-CKD model of unilateral ischemia-reperfusion injury.
View Article and Find Full Text PDFBackground: Chronic kidney disease (CKD) is highly prevalent worldwide, and its global burden is substantial and growing. CKD displays a number of features of accelerated senescence. Tubular cell senescence is a common biological process that contributes to CKD progression.
View Article and Find Full Text PDFUrinary extracellular vesicles (uEVs) are rich in valuable biomolecule information which are increasingly recognized as potential biomarkers for various diseases. uEV long RNAs are among the critical cargos capable of providing unique transcriptome information of the source cells. However, consensus regarding ideal reference genes for relative long RNAs quantification in uEVs is not available as of date.
View Article and Find Full Text PDFAcute kidney injury (AKI) transformed to chronic kidney disease (CKD) is a critical clinical issue characterized by tubulointerstitial inflammation (TII) and fibrosis. However, the exact mechanism remains largely unclear. In this study, we used single-cell RNA sequencing (scRNA-seq) to obtain a high-resolution profile of T cells in AKI to CKD transition with a mice model of unilateral ischemia-reperfusion injury (uIRI).
View Article and Find Full Text PDFIntroduction: Roxadustat, the first-in-class drug for the treatment of renal anemia, has demonstrated efficacy in renal anemia with microinflammation. Additional data are needed regarding the efficacy of roxadustat on renal anemia with systemic macroinflammation.
Methods: Three cohorts of renal anemia based on the basic level of high-sensitivity CRP were included.
Background And Purpose: Activation of the renin-angiotensin system, as a hallmark of hypertension and chronic kidney diseases (CKD) is the key pathophysiological factor contributing to the progression of tubulointerstitial fibrosis. LIM and senescent cell antigen-like domains protein 1 (LIMS1) plays an essential role in controlling of cell behaviour through the formation of complexes with other proteins. Here, the function and regulation of LIMS1 in angiotensin II (Ang II)-induced hypertension and tubulointerstitial fibrosis was investigated.
View Article and Find Full Text PDFDirect tubular injury caused by several medications, especially chemotherapeutic drugs, is a common cause of AKI. Inhibition or loss of cyclin-dependent kinase 12 (CDK12) triggers a transcriptional elongation defect that results in deficiencies in DNA damage repair, producing genomic instability in a variety of cancers. Notably, 10-25% of individuals developed AKI after treatment with a CDK12 inhibitor, and the potential mechanism is not well understood.
View Article and Find Full Text PDFBackground: The discovery of phospholipase A2 receptor (PLA2R) and its antibody (aPLA2Rab) has paved the way for diagnosing PLA2R-associated membranous nephropathy (PLA2R-MN) with a high specificity of 98%. However, the sensitivity was only 40% to 83.9%, and there is ongoing discussion around determining the optimal threshold for diagnosis.
View Article and Find Full Text PDFThe transcription factor hypoxia-inducible factor-1α (HIF-1α), as a master regulator of adaptive responses to hypoxia, possesses two transcriptional activation domains [TAD, N-terminal (NTAD), and C-terminal (CTAD)]. Although the roles of HIF-1α NTAD in kidney diseases have been recognized, the exact effects of HIF-1α CTAD in kidney diseases are poorly understood. Here, two independent mouse models of hypoxia-induced kidney injury were established using HIF-1α CTAD knockout (HIF-1α CTAD) mice.
View Article and Find Full Text PDFBackground: Tubulointerstitial inflammation (TII) is a critical pathological feature of kidney disease leading to renal fibrosis, and its treatment remains a major clinical challenge. We sought to explore the role of quercetin, a potential exosomes inhibitor, in exosomes release and TII.
Methods: The effects of quercetin on exosomes release and TII were examined by two TII mouse models: the unilateral ureteral obstruction (UUO) models and the LPS-induced mouse models.
The increasing prevalence of chronic kidney disease (CKD) is a major global public health concern. Despite the complicated pathogenesis of CKD, renal fibrosis represents the most common pathological condition, comprised of progressive accumulation of extracellular matrix in the diseased kidney. Over the last several decades, tremendous progress in understanding the mechanism of renal fibrosis has been achieved, and corresponding potential therapeutic strategies targeting fibrosis-related signaling pathways are emerging.
View Article and Find Full Text PDFPeritubular capillaries (PTCs) are closely related to renal tubules in structure and function, and both are pivotal regulators in the development and progression of acute kidney injury (AKI). However, the mechanisms that underlie the interaction between PTCs and tubules during AKI remain unclear. Here we explored a new mode of tubulovascular crosstalk mediated by small extracellular vesicles (sEV) after AKI.
View Article and Find Full Text PDFTubular epithelial cells (TECs) exposed to hypoxia incite tubulointerstitial inflammation (TII), while the exact mechanism is unclear. In this study, we identified that hypoxia evoked tubule injury as evidenced by tubular hypoxia-inducible factor-1α and kidney injury molecule-1 (KIM-1) expression and that renal small extracellular vesicle (sEV) production was increased with the development of TII after ischemia-reperfusion injury (IRI). Intriguingly, KIM-1-positive tubules were surrounded by macrophages and co-localized with sEVs.
View Article and Find Full Text PDFPurpose: Current vaccines for the SARS-CoV-2 virus mainly induce neutralizing antibodies but overlook the T cell responses. This study aims to generate an exosomal vaccine carrying T cell epitope peptides of SARS-CoV-2 for the induction of CD8 T cell response.
Methods: Thirty-one peptides presented by HLA-A0201 molecule were conjugated to the DMPE-PEG-NHS molecules, and mixed with DSPE-PEG to form the peptide-PEG-lipid micelles, then fused with exosomes to generate the exosomal vaccine, followed by purification using size-exclusion chromatography and validation by Western blotting, liquid nuclear magnetic resonance (NMR) test and transmission electron microscopy.
: Cisplatin nephrotoxicity is an important cause of acute kidney injury (AKI), limiting cisplatin application in cancer therapy. Growing evidence has suggested that genome instability, telomeric dysfunction, and DNA damage were involved in the tubular epithelial cells (TECs) damage in cisplatin-induced AKI (cAKI). However, the exact mechanism is largely unknown.
View Article and Find Full Text PDFJ Control Release
September 2022
With the ever-increasing burden of kidney disease, the need for developing new therapeutics to manage this disease has never been greater. Extracellular vesicles (EVs) are natural membranous nanoparticles present in virtually all organisms. Given their excellent delivery capacity in the body, EVs have emerged as a frontier technology for drug delivery and have the potential to usher in a new era of nanomedicine for kidney disease.
View Article and Find Full Text PDFIntroduction: Acute kidney injury (AKI) is a major public health problem worldwide. However, there is no definitive therapies to treat established AKI. In this study, we used FG-4592 to induce hypoxia inducible factor (HIF) expression in cells and then explored whether the extracellular vesicles (EVs) secreted by HIF-upregulated cells could alleviate ischemia/reperfusion injury (IRI)-induced AKI.
View Article and Find Full Text PDFCyclin-dependent kinase 12 (CDK12) plays a critical role in regulating gene transcription. CDK12 inhibition is a potential anticancer therapeutic strategy. However, several clinical trials have shown that CDK inhibitors might cause renal dysfunction and electrolyte disorders.
View Article and Find Full Text PDFPurpose: Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease worldwide. Risk assessment provides information about patient prognosis, contributing to the risk stratification of patients and the rational allocation of medical resources. We aimed to develop a model for individualized prediction of renal function decline in patients with type 2 DKD (T2DKD).
View Article and Find Full Text PDFBackground: Urinary sediment messenger RNAs (mRNAs) have been shown as novel biomarkers of kidney disease. We aimed to identify targeted urinary mRNAs in diabetic nephropathy (DN) based on bioinformatics analysis and clinical validation.
Methods: Microarray studies of DN were searched in the GEO database and Nephroseq platform.
Antioxid Redox Signal
November 2022
The disturbance of the hypoxia response system is closely related to human diseases, because it is essential for the maintenance of homeostasis. Given the significant role of the hypoxia response system in human health, therapeutic applications targeting prolyl hydroxylase-hypoxia-inducible factor (HIF) signaling have been attempted. Thus, systemically reviewing the hypoxia response-based therapeutic strategies is of great significance.
View Article and Find Full Text PDF