Three types of graphene oxide/silver nanoparticles (GO/AgNPs) composite membranes were prepared to investigate size-effect of AgNPs on nanofiltration ability. The size of AgNPs was 8, 20, and 33 nm, which was characterized by UV-visible spectroscopy and transmission electron microscopy. The morphology and structure of GO and GO/AgNPs composite membranes were characterized by atomic force microscopy, scanning electron microscopy, and X-ray diffraction.
View Article and Find Full Text PDFResearch (Wash D C)
January 2020
The contact angle, as a vital measured parameter of wettability of material surface, has long been in dispute whether it is affected by gravity. Herein, we measured the advancing and receding contact angles on extremely low contact angle hysteresis surfaces under different gravities (1-8G) and found that both of them decrease with the increase of the gravity. The underlying mechanism is revealed to be the contact angle hysteresis and the deformation of the liquid-vapor interface away from the solid surface caused by gradient distribution of the hydrostatic pressure.
View Article and Find Full Text PDFIn this work, graphene oxide (GO)/ethylene glycol (EG) membranes were designed by a vacuum filtration method for molecular separation and water purification. The composite membranes were characterized by scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The interlayer spacing of GO membranes (0.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
October 2013
High-quality crystals are key to obtaining accurate three-dimensional structures of proteins using X-ray diffraction techniques. However, obtaining such protein crystals is often a challenge. Several containerless crystallization techniques have been reported to have the ability to improve crystal quality, but it is unknown which is the most favourable way to grow high-quality protein crystals.
View Article and Find Full Text PDF