Macromol Rapid Commun
November 2019
Sequence-controlled polymerization is the forefront of polymer chemistry. Herein, the feasibility of sequence regulation by using organocatalyzed ring-opening polymerization (ROP) is demonstrated. In particular, ring expansion strategy is employed to synthesize pre-organized monomers 1 and 2.
View Article and Find Full Text PDFA novel postpolymerization modification methodology is demonstrated to achieve selective functionalization of hyperbranched polymer (HBP). Terminal and internal acrylates of HBP derived from cross-metathesis polymerization (CMP) are functionalized in a chemoselective fashion using the thiol-Michael chemistries. Model reactions between different thiols (benzyl mercaptan and methyl thioglycolate) and acrylates (n-hexyl acrylate and ethyl trans-2-decenoate) by using dimethylphenylphosphine or amylamine as the catalyst are investigated to optimize the modification protocol for HBP.
View Article and Find Full Text PDFSequence-regulated polymerization is realized upon sequential cross-metathesis polymerization (CMP) and exhaustive hydrogenation to afford precision aliphatic polyesters with alternating sequences. This strategy is particularly suitable for the arrangement of well-known monomer units including glycolic acid, lactic acid, and caprolactic acid on polymer chain in a predetermined sequence. First of all, structurally asymmetric monomers bearing acrylate and α-olefin terminuses are generated in an efficient and straightforward fashion.
View Article and Find Full Text PDF