Publications by authors named "Lin-Ding Yuan"

The nonrelativistic spin-splitting (NRSS) of electronic bands in "altermagnets" has sparked renewed interest in antiferromagnets (AFMs) that have no net magnetization. However, altermagnets with collinear and compensated magnetism are not the only type of NRSS AFMs. In this Letter, we identify the symmetry conditions and characteristic signatures of a distinct group of NRSS AFMs that go beyond the description of altermagnets.

View Article and Find Full Text PDF

Germanium (Ge) is an attractive material for Silicon (Si) compatible optoelectronics, but the nature of its indirect bandgap renders it an inefficient light emitter. Drawing inspiration from the significant expansion of Ge volume upon lithiation as a Lithium (Li) ion battery anode, here, we propose incorporating Li atoms into the Ge to cause lattice expansion to achieve the desired tensile strain for a transition from an indirect to a direct bandgap. Our first-principles calculations show that a minimal amount of 3 at.

View Article and Find Full Text PDF

Many textbook physical effects in crystals are enabled by some specific symmetries. In contrast to such 'apparent effects', 'hidden effect X' refers to the general condition where the nominal global system symmetry would disallow the effect X, whereas the symmetry of local sectors within the crystal would enable effect X. Known examples include the hidden Rashba and/or hidden Dresselhaus spin polarization that require spin-orbit coupling, but unlike their apparent counterparts are demonstrated to exist in non-magnetic systems even in inversion-symmetric crystals.

View Article and Find Full Text PDF

Energy bands in antiferromagnets are supposed to be spin degenerate in the absence of spin-orbit coupling (SOC). Recent studies have identified formal symmetry conditions for antiferromagnetic crystals in which this degeneracy can be lifted, spin splitting,even in the vanishing SOC (i.e.

View Article and Find Full Text PDF

We developed a versatile asymmetric strategy to synthesize different classes of sulfoglycolipids (SGLs) from Mycobacterium tuberculosis. The strategy features the use of asymmetrically protected trehaloses, which were acquired from the glycosylation of TMS α-glucosyl acceptors with benzylidene-protected thioglucosyl donors. The positions of the protecting groups at the donors and acceptors can be fine-tuned to obtain different protecting-group patterns, which is crucial for regioselective acylation and sulfation.

View Article and Find Full Text PDF