Publications by authors named "Lin Zhuang"

Ferritinophagy, the selective autophagic degradation of ferritin to release iron, is emerging as a critical regulator of iron homeostasis and a key player in the pathogenesis of various liver diseases. This review comprehensively examines the mechanisms, regulation, and multifaceted roles of ferritinophagy in liver health and disease. Ferritinophagy is intricately regulated by several factors, including Nuclear Receptor Coactivator 4 (NCOA4), Iron regulatory proteins and signaling pathways such as mTOR and AMPK.

View Article and Find Full Text PDF

Objectives: A causal relationship has been found between the abundance of some flora in the gut microbiota and the development of pre-eclampsia (PE). Short-chain fatty acids in gut microbes are an important source of lipids. The causal effect of lipid metabolism/fatty acid metabolism pathways on PE exposure is unknown.

View Article and Find Full Text PDF

Alcoholic liver disease is one of the diseases with a high mortality rate worldwide, resulting from excessive and chronic alcohol consumption. With the rapid rise of intestinal microbial research, more and more researchers have begun to focus on the role of probiotics in preventing, alleviating or treating diseases. In this study, effects of lactic acid bacteria (LAB), a general type of probiotic, isolated from the fermented grains of Chinese baijiu, on alcohol-induced liver injury and alcohol metabolism were investigated, and the results showed that LTJ12, LTJ28, LTJ30, and LTJ32 could prevent drunkenness and sober up, and had a good protective effect on alcoholic liver injury.

View Article and Find Full Text PDF

CO electrolysis in alkaline media presents advantages by suppressing the competitive hydrogen evolution reaction (HER) and enhancing the CO reduction selectivity. However, it suffers from the carbonation issue, leading to substantial carbon loss due to CO transmembrane transport. To tackle this issue, we here put forward a redox mediator (RM)-coupled electrolysis strategy.

View Article and Find Full Text PDF

Low-iridium acid-stabilized electrocatalysts for efficient oxygen evolution reaction (OER) are crucial for the market deployment of proton exchange membrane (PEM) water electrolysis. Manipulating the in situ reconstruction of Ir-based catalysts with favorable kinetics is highly desirable but remains elusive. Herein, we propose an atomic ordering strategy to modulate the dynamic surface restructuring of catalysts to break the activity/stability trade-off.

View Article and Find Full Text PDF

Anion exchange membrane fuel cells (AEMFCs) have successfully eliminated anode carbonate precipitation through cation immobilization with the incorporation of alkaline polymer electrolytes (APEs). However, carbonation by CO in ambient air continues to induce significant AEMFC performance losses via mechanisms that remain unclear/elusive. In this multimodal investigation of AEMFC carbonation, we find that the increase in ionic resistance after carbonation accounts for only a small fraction of the cell voltage drop, especially at high current densities.

View Article and Find Full Text PDF

Alkaline polymer electrolyte fuel cells (APEFCs) have achieved notable advancements in peak power density, yet their durability during long-term operation remains a significant challenge. It has been recognized that increasing the hydrophobicity of the catalyst layer can effectively alleviate the performance degradation. However, a microscopic view of how hydrophobicity contributes to the stability of the catalyst layer microstructure is not clear.

View Article and Find Full Text PDF

Semiconductor ion fuel cells (SIFCs) have demonstrated impressive ionic conductivity and efficient power generation at temperatures below 600 °C. However, the lack of understanding of the ionic conduction mechanisms associated with composite electrolytes has impeded the advancement of SIFCs toward lower operating temperatures. In this study, a CeO/β″-AlO heterostructure electrolyte is introduced, incorporating β″-AlO and leveraging the local electric field (LEF) as well as the manipulation of the melting point temperature of carbonate/hydroxide (C/H) by Na and Mg from β″-AlO.

View Article and Find Full Text PDF

Purpose: Long noncoding RNAs (lncRNAs) exert a significant influence on various cancer-related processes through their intricate interactions with RNAs. Among these, lncRNA ZFAS1 has been implicated in oncogenic roles in multiple cancer types. Nevertheless, the intricate biological significance and underlying mechanism of ZFAS1 in the initiation and progression of hepatocellular carcinoma (HCC) remain largely unexplored.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to explore the link between the 7-joint ultrasound score (US7) and disease activity in patients with rheumatoid arthritis (RA).
  • Researchers evaluated 44 patients with active RA, analyzing how US7 related to disease indicators like the disease activity score (DAS28), rheumatoid factor (RF), ESR, and CRP.
  • The findings indicated that US7 positively correlates with these disease activity markers, suggesting it can effectively reflect and assess disease severity in RA patients.
View Article and Find Full Text PDF

A prominent feature of modern electrochemical technologies, such as fuel cells and electrolysis, is the employing of polyelectrolytes instead of liquid electrolytes. Unlike the well-studied electrode/liquid electrolyte interfaces, however, the catalytic characteristics of electrode/polyelectrolyte interfaces remain largely unexplored, mostly due to the lack of reliable probing methods. Herein, we report a universally applicable approach to investigating electrocatalytic reactions at electrode/polyelectrolyte interfaces under normal electrochemical conditions.

View Article and Find Full Text PDF

Acute cholestatic liver injury (ACLI) is a disease associated with bile duct obstruction that causes liver inflammation and apoptosis. Although G protein-coupled bile acid receptor1 (Gpbar-1) has diverse metabolic roles, its involvement in ACLI-associated immune activation remains unclear. Liver tissues and blood samples from 20 patients with ACLI and 20 healthy individuals were analyzed using biochemical tests, H&E staining, western blotting, and immunohistochemistry to verify liver damage and expression of Gpbar-1.

View Article and Find Full Text PDF

Being an efficient approach to the utilization of hydrogen energy, the hydrogen oxidation reaction (HOR) is of particular significance in the current carbon-neutrality time. Yet the mechanistic picture of the HOR is still blurred, mostly because the elemental steps of this reaction are rapid and highly entangled, especially when deviating from the thermodynamic equilibrium state. Here we report a strategy for decoding the HOR mechanism under operando conditions.

View Article and Find Full Text PDF

Background: The lncRNA TRG-AS1 and its co-expressed gene P2RY10 are important for colorectal cancer (CRC) occurrence and development. The purpose of our research was to explore the roles of TRG-AS1 and P2RY10 in CRC progression.

Methods: The abundance of TRG-AS1 and P2RY10 in CRC cell lines (HT-29 and LoVo) and normal colon cells FHC was determined and difference between CRC cells and normal cells was compared.

View Article and Find Full Text PDF

Lin Zhuang, Qiu Wang, Aiwen Lei and Qianghui Zhou introduce the and joint themed collection celebrating the 130th Anniversary of Wuhan University.

View Article and Find Full Text PDF

Bimetallic PtRu are promising electrocatalysts for hydrogen oxidation reaction in anion exchange membrane fuel cell, where the activity and stability are still unsatisfying. Here, PtRu nanowires were implanted with a series of oxophilic metal atoms (named as i-M-PR), significantly enhancing alkaline hydrogen oxidation reaction (HOR) activity and stability. With the dual doping of In and Zn atoms, the i-ZnIn-PR/C shows mass activity of 10.

View Article and Find Full Text PDF

Rapid-acting, convenient, and broadly applicable medical materials are in high demand for the treatment of extensive and intricate tissue injuries in extremely medical scarcity environment, such as battlefields, wilderness, and traffic accidents. Conventional biomaterials fail to meet all the high criteria simultaneously for emergency management. Here, a multifunctional hydrogel system capable of rapid gelation and in situ spraying, addressing clinical challenges related to hemostasis, barrier establishment, support, and subsequent therapeutic treatment of irregular, complex, and urgent injured tissues, is designed.

View Article and Find Full Text PDF

The reactivity of metal surfaces is a cornerstone concept in chemistry, as metals have long been used as catalysts to accelerate chemical reactions. Although fundamentally important, the reactivity of metal surfaces has hitherto not been explicitly defined. For example, in order to compare the activity of two metal surfaces, a particular probe adsorbate, such as O, H, or CO, has to be specified, as comparisons may vary from probe to probe.

View Article and Find Full Text PDF

Ni-based hydrogen oxidation reaction (HOR) electrocatalysts are promising anode materials for the anion exchange membrane fuel cells (AEMFCs), but their application is hindered by their inherent instability for practical operations. Here, we report a TiO supported NiMo (NiMo/TiO) catalyst that can effectively catalyze HOR in alkaline electrolyte with a mass activity of 10.1 ± 0.

View Article and Find Full Text PDF

Objectives: We developed a new Bakri balloon tamponade (BBT) placement technique after vaginal delivery, which aimed to be faster without balloon slippage. This study compared the new method with standard placement of BBT in women with postpartum hemorrhage (PPH) after vaginal delivery.

Material And Methods: This study was undertaken of women who underwent vaginal delivery at the obstetrics and gynecology departments of the Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan Provincial Hospital for Women and Children, and Si Chuan JINXIN Women and Children Hospital between January 2014 and December 2020.

View Article and Find Full Text PDF

Probing the chemistry and materials science of electrochemical energy materials is a central topic in both chemical physics and energy chemistry due to the increasingly important role of energy devices in the current and future energy system and industry. Especially, understanding the chemical physics of electrochemical energy materials is the key to enhance the performance of energy storage and conversion devices such as batteries, fuel cells, electrolyzers, and supercapacitors. This special topic focuses on the fundamental understanding of electrochemical energy applications, including electrochemistry fundamentals, structural dynamics and degradation mechanism of materials, optimization strategies for improving electrochemical performance of energy devices, and emerging simulation and characterization methods applied to advanced energy materials.

View Article and Find Full Text PDF

Honeycomb sandwich structures have been widely used in the field of engineering owing to their outstanding mechanical properties. However, for a honeycomb sandwich structure with large spatial periodicity, there is a low-frequency sound insulation valley. Here, the sound transmission across locally resonant honeycomb sandwich meta-structures was investigated to overcome this sound-insulation valley.

View Article and Find Full Text PDF

Anion exchange membrane fuel cells (AEMFCs) that operate at high pH, offer the advantage of enabling the use of abundant 3d-transition metal-based electrocatalysts. While they have shown remarkable improvement in performance, their long-term durability remains insufficient for practical applications with the alkaline polymer electrolytes (APEs) being the limiting factor. The stability of APEs is generally evaluated in concentrated alkaline solutions, which overlooks/oversimplifies the complex electrochemical environment of the catalyst layer in membrane electrode assembly (MEA) devices.

View Article and Find Full Text PDF

Electrochemical CO reduction reaction (CO RR), as a promising route to realize negative carbon emissions, is known to be strongly affected by electrolyte cations (i.e., cation effect).

View Article and Find Full Text PDF

The electrocatalytic oxygen evolution reaction (OER) plays a crucial role in renewable clean energy conversion technologies and has developed into an important direction in the field of advanced energy, becoming the focus of basic research and industrial development. Herein, we report the synthesis and application of flower-like nickel-coated FeO@SiO magnetic nanoparticles decorated on a graphene electrocatalyst for the OER that exhibit high efficiency and robust durability. The catalysts were optimized using a rotating ring-disk electrode to test their oxygen evolution properties in 1.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionpsao6lmd4j8pb0ddjmcg07rmlsgabenb): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once