Publications by authors named "Lin Yan-Ling"

Industrial wastewater management is a significant global challenge. Sludge microbiota from swine farms may play a crucial role in enhancing wastewater treatment processes, thereby reducing water pollution from industrial activities. A deeper understanding of this complex community could lead to innovative approaches for improving wastewater treatment methods.

View Article and Find Full Text PDF

Synergistic chemo-phototherapy has offered tremendous potential in cancer treatment. Nevertheless, nanosystems usually suffer from the complexity of multicomponents (polymeric or inorganic materials), which results in carrier-related toxicity issues. Moreover, the GSH over-expression of tumor cells seriously compromises ROS therapeutic efficiency.

View Article and Find Full Text PDF

Vascular smooth muscle cells (VSMCs) are indispensable components in foam cell formation in atherosclerosis. However, the mechanism behind foam cell formation of VSMCs has not been addressed. We found a potential association between deletion of smooth muscle (SM) 22α and deregulated nuclear receptors liver X receptors (LXRs)/retinoid X receptor (RXR) signaling in mice.

View Article and Find Full Text PDF

Objective: To investigate the protective effect of dexmedetomidine (Dex) on traumatic spinal cord injury (TSCI) and to evaluate the involvement of inhibition of endoplasmic reticulum (ER) stress response in the potential mechanism.

Method: Sprague-Dawley rats were randomly divided into five groups. The hind limb locomotor function of rats was evaluated at 1, 3 and 7 days after the operation.

View Article and Find Full Text PDF

Vascular smooth muscle cell (VSMC) apoptosis is a major defining feature of abdominal aortic aneurysm (AAA) and mainly caused by inflammatory cell infiltration. Smooth muscle (SM) 22 prevents AAA formation through suppressing NF-B activation. However, the role of SM22 in VSMC apoptosis is controversial.

View Article and Find Full Text PDF

Introduction: Pyroptosis induced by lipopolysaccharide (LPS) is a dissolved form of cell death. The molecular marker gasdermin D, specifically GSDMD-N, is critically required for the induction of pyroptosis. Recently, there have been studies showing that LPS is closely related to tumor biology.

View Article and Find Full Text PDF

Objective: To investigate the expression of miR-101 and EZH2 in patients with mantle cell lymphoma(MCL) and to analyze its correlation with clinical prognosis of MCL patients.

Methods: RQ-PCR and S-P immunohistochemistry were used to detect the expressions of miR-101 and EZH2 in tissue of MCL patients. CCK-8 was used to assay the effect of miR-100 minics on the proliferation of Jeko-1 and Mino cells; the flow cytometry with Annexin V/PI double staining was used to assay the apoptosis; Western blot was used to assay the effect of miR-101 minics on the expression of EZH2 protein in Jeko-1 and Mino cells.

View Article and Find Full Text PDF

Background: To evaluate the performance of a chemiluminescence detection reagent for Neuron-specific enolase (NSE).

Methods: Based on the "Guiding principles on performance analysis of diagnostic, reagents in vitro" and the Clinical and Laboratory Standards Institute (CLSI) Guidelines, performance of the CLIA NSE kit was evaluated, including the detection limit, linear range, reportable range, accuracy, precision, cross reactivity, interference factors, Hook effect, and method comparison.

Results: The detection limit of the reagent was 0.

View Article and Find Full Text PDF

Background: To verify and evaluate the performance characteristics of a creatine kinase phosphokinase isoenzymes MB (CK-MB) assay kit, which produced by Xiamen Innodx Biotech Co. Ltd.

Methods: Evaluation was carried out according to "Guidelines for principle of analysis performance evaluation of in vitro diagnostic reagent.

View Article and Find Full Text PDF

Objective: Smooth muscle (SM) 22α, an actin-binding protein, displays an upregulated expression as a marker during cellular senescence. However, the causal relationship between SM22α and senescence is poorly understood. This study aimed to investigate the role of SM22α in angiotensin II (Ang II)-induced senescence of vascular smooth muscle cells (VSMCs).

View Article and Find Full Text PDF

Aims: Sirtuin 1 (SIRT1) inhibits nuclear factor kappa B (NF-κB) activity in response to the inflammatory cytokine tumour necrosis factor alpha (TNF-α). Smooth muscle (SM) 22α is a phosphorylation-regulated suppressor of IKK-IκBα-NF-κB signalling cascades in vascular smooth muscle cells (VSMCs). Sm22α knockout results in increased expression of pro-inflammatory genes in the aortas which are controlled by NF-κB.

View Article and Find Full Text PDF

Recent studies have revealed that long non-coding RNAs (lncRNAs) participate in vascular homeostasis and pathophysiological conditions development. But still very few literatures elucidate the regulatory mechanism of non-coding RNAs in this biological process. Here we identified lncRNA taurine up-regulated gene 1 (TUG1) in rat vascular smooth muscle cells (VSMCs), and got 4612bp nucleotide sequence.

View Article and Find Full Text PDF

We previously demonstrated that smooth muscle (SM) 22α promotes the migration activity in contractile vascular smooth muscle cells (VSMCs). Based on the varied functions exhibited by SM22α in different VSMC phenotypes, we investigated the effect of SM22α on VSMC migration under pathological conditions. The results demonstrated that SM22α overexpression in synthetic VSMCs inhibited platelet-derived growth factor (PDGF)-BB-induced cell lamellipodium formation and migration, which was different from its action in contractile cells.

View Article and Find Full Text PDF

Unlabelled: The insulin-sensitive glucose transporter 4 (GLUT4) is a predominant facilitative glucose transporter in vascular smooth muscle cells (VSMCs) and is significantly upregulated in rabbit neointima. This study investigated the role of GLUT4 in VSMC proliferation, the cellular mechanism underlying PDGF-BB-stimulated GLUT4 translocation, and effects of SM22α, an actin-binding protein, on this process. Chronic treatment of VSMCs with PDGF-BB significantly elevated GLUT4 expression and glucose uptake.

View Article and Find Full Text PDF

Rationale: Vascular smooth muscle cell (VSMC) survival under stressful conditions is integral to promoting vascular repair, but facilitates plaque stability during the development of atherosclerosis. The cytoskeleton-associated smooth muscle (SM) 22α protein is involved in the regulation of VSMC phenotypes, whereas the pentose phosphate pathway plays an essential role in cell proliferation through the production of dihydronicotinamide adenine dinucleotide phosphate.

Objective: To identify the relationship between dihydronicotinamide adenine dinucleotide phosphate production and SM22α activity in the development and progression of vascular diseases.

View Article and Find Full Text PDF

Smooth muscle (SM) 22α, an actin-binding protein, is down-regulated in atherosclerotic arteries. Disruption of SM22α promotes arterial inflammation through activation of reactive oxygen species (ROS)-mediated nuclear factor (NF)-κB pathways. This study aimed to investigate the mechanisms by which SM22α regulates vascular inflammatory response.

View Article and Find Full Text PDF

Unlabelled: Smooth muscle 22α (SM22α) is involved in stress fiber formation and enhances contractility in vascular smooth muscle cells (VSMCs). In many cases, SM22α acts as an adapter protein to assemble signaling complexes and regulate signaling, but whether SM22α regulates contractile signaling induced by angiotensin II (AngII) remains unclear. To address this issue, we established a hypertension model of Sm22α(-/-) mice, and demonstrated that hypertension induced by AngII was attenuated in Sm22α(-/-) mice.

View Article and Find Full Text PDF

Two EDTA analogue-tethered C2-symmetrical dimeric monopyrrole-polyamide 5 and dipyrrole-polyamide 6, and their corresponding Ce(IV) complexes Ce-5 and Ce-6 were synthesized and fully characterized. Agarose gel electrophoresis studies on pBR322 DNA cleavage indicate that complexes Ce-5 and Ce-6 exhibited potent DNA-cleaving activities under physiological conditions. The maximal first-order rate constants (kmax's) were (0.

View Article and Find Full Text PDF

Two Câ‚‚-symmetrical dipyrrole-polyamide dimers 2 and 3 that were tethered with triethylenetetramine and spermine, respectively, and their corresponding Cu(II) complexes 2@Cu(2+) and 3@Cu(2+), were synthesized and fully characterized. Agarose gel electrophoresis studies on pBR322 DNA cleavage indicated that both Cu(II) complexes exhibited potent DNA-cleaving activities under physiological conditions, most probably via an oxidative mechanism. Kinetic assay indicate that 2@Cu(2+) and 3@Cu(2+) exhibited comparable catalytic efficiency with the Cu(II) complex of their 2,2'-(ethane-1,2-diylbis(oxy))diethanamine-tethered analog 1.

View Article and Find Full Text PDF

9-O-(4-carboxybenzyl)berberine (CBB) 1 was synthesized from the reaction of berberrubine with methyl 4-(bromomethyl)benzoate and subsequent hydrolysis. Its Cu(II) complex 2 was prepared from the reaction with Cu(NO(3))(2)·3H(2)O, and established as [Cu(CBB)(2)](NO(3))(2)·2H(2)O by means of (1)H NMR, UV, IR, elemental analysis and TGA measurements. Agarose gel electrophoresis study on the cleavage of plasmid pBR322 DNA indicated that complex 2 was capable of efficiently cleaving DNA under physiological conditions, most probably via an oxidative mechanistic pathway involving the formation of singlet oxygen as the reactive species.

View Article and Find Full Text PDF

Inspired by the potent DNA-cleaving activity of the Cu(II) complex of monopyrrole-polyamide dimer 1 (i.e., 1@Cu(2+)), we designed a new dimeric dipyrrole-polyamide analog 2 with the aim to optimize the catalytic activities of the metal complexes of this type of polypyrrole-polyamides.

View Article and Find Full Text PDF

A simple polyether-tethered pyrrole-polyamide dimer 1 was synthesized in 50% yield from the reaction of 2,2,2-trichloro-1-(1-methyl-4-nitro-1H-pyrrol-2-yl)ethanone with 2,2'-[1,2-ethanediylbis(oxy)]bisethanamine, and fully characterized on the basis of ¹H- and ¹³C-NMR, MS, HR-MS, and IR data. Agarose gel-electrophoresis study of the cleavage of plasmid pBR322 DNA by the complexes of compound 1 with seven metal ions indicated that most of the metal complexes were capable of efficiently cleaving DNA at pH 7.0 and 37°.

View Article and Find Full Text PDF

Vibrio hollisae, a halophilic species recently reclassified as Grimontia hollisae, is a causative agent of gastroenteritis and septicaemia. One important pathogenic Vibrio factor, thermostable direct haemolysin (TDH), has been purified and crystallized in two crystal forms using the vapour-diffusion method. The crystals belonged to an orthorhombic space group, with unit-cell parameters a = 104.

View Article and Find Full Text PDF